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Abstract. Our thesis is that economics and investment policies are vi-
tal factors in determining the outcome of cybersecurity conflicts. For our
economic framework we borrow from the pioneering work of Gordon and
Loeb in which the Defender optimally trades-off investments for lower
likelihood of its system breach. Our two-sided model has in addition an
Attacker, assumed to be rational and also guided by economic considera-
tions in its decision-making, to which the Defender responds. The model
is a simplified adaptation of a model proposed during the Cold War for
weapons deployment in the US. Our model is a Stackelberg game and,
from an analytic perspective, a Max-Min problem. The complexity of the
analysis is due to the non-convexity of the objective function in the op-
timization. The Attacker’s possible actions add substantially to the risk
to the Defender, and the Defender’s rational, risk-neutral optimal invest-
ments in general substantially exceed the optimal investments predicted
by the one-sided Gordon-Loeb model. We obtain a succinct set of three
decision types that categorize all of the Defender’s optimal investment
decisions. Also, the Defender’s optimal decisions exhibit discontinuous
behavior as the initial vulnerability of its system is varied. The analysis
is supplemented by extensive numerical illustrations. The results from
our model open several major avenues for future work.

Keywords: Optimal security investment · Economics of cybersecurity ·
Max-Min optimization · Vulnerability mitigation

1 Introduction

In recent times the role of cybersecurity has grown at a pace comparable to that
of information technology in society. This is to be expected since its failure has
the potential to inflict damage wherever IT is extensively deployed, from national
security to transportation, health care, banking, and energy. The number and
variety of attackers, which range from state actors and terrorists to criminals
and hackers, has grown similarly, as have their resources [1]. Just at the level
of commercial enterprises, the projected current annual loss from cybercrime is
estimated to be $945 billion, almost double the corresponding amount of $500
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billion in 2018 [2]. IBM has estimated the cost of a (commercial) data breach in
2021 to be $4.24 million, up 10% from the previous year [3].

Cybersecurity defense and investments have kept pace as well. An example,
at the national level in the USA, is the linked combination of the National
Vulnerability Database [4], the Common Vulnerabilities and Exposures list, and
the NIST Common Vulnerability Scoring System [5].

Our work in cybersecurity takes the economic perspective, and it examines
the many facets of investment decision-making in the context of a model, which
is simple to describe, and yet is of broad interest and rich in analytic and com-
putational complexity. The model is an adaptation of a simplification of a model
proposed during the Cold War for weapons deployment in the US [6]. Our model
is two-sided, i.e., the Attacker and the Defender actively interact through the
instrument of investments to further their respective goals of reaping gains from
breaching the system, and minimizing expected losses by mitigating vulnerabili-
ties. Both the Attacker and the Defender are assumed to be rational, risk-neutral
and guided by economic consideration in their decision-making.

The Defender, the first mover, on inheriting a system with known initial vul-
nerability, decides on the amount that it will invest in improving the system
defense by optimizing its objective function. Then, with knowledge of the up-
graded system breach probability, the Attacker follows in attempting to breach
the system by expending the amount of effort that optimizes its objective func-
tion.

We build our economic framework on the important, pioneering work of Gor-
don and Loeb [7] based on a one-sided model in which the Defender optimally
invests in vulnerability mitigation. The Defender’s investment decision is based
on a known nonlinear function, S(z, v), which gives the probability of a breach
in its system from attacks, and which depends on the system’s initial vulner-
ability (v), and the subsequent investment (z). For two specific classes of the
function S(z, v), they also prove the striking result that the optimum Defender’s
investment does not exceed 1/e, i.e., about 37%, of the expected loss from a
breach. Subsequent work [8,9] proved that the 1/e rule holds whenever S(z, v)
is log-convex in z. We assume log-convexity of the function S(z, v) with respect
to z.

Our two-sided model is a Stackelberg leader-follower game with the Defender
as leader and Attacker as follower [10]. Our analysis parallels that of a Max-
Min problem. The closest related work is Danskin [6]; however, our results here
are quite different. Our goal is to extract a qualitative understanding of the
quantitative processes in the optimization of investments. Our main obstacle is
the provable nonconvexity of the Defender’s objective function3, which puts the
problem nominally in the intractable category. However, there is enough struc-
ture that we are able to exploit to show that there are only three distinct types of
optimum investment. We next look at the point of transitions in the Defender’s

3 It is worth recalling the view of an eminent researcher, R.T. Rockafeller: “The great
watershed in optimization isn’t between linearity and nonlinearity, but convexity
and nonconvexity." [11]
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optimum decision types as the initial vulnerability, v, is varied. We show that
the points at which transitions occur are solutions of Fixed Point equations.
While the total number of transitions are small, decisions across transitions are
typically sharply different. We also find that, in general, the investments pre-
dicted by the one-sided model of Gordon-Loeb [7] have qualitatively different
characteristics, and also underestimate the investments necessary to prudently
defend the system against attackers.

Related Work Anderson [12] gives an economic perspective of the many,
often conflicting, factors that make realizing cybersecurity hard. Fedel and Roner
[13] is a recent, comprehensive review of the literature on cybersecurity invest-
ments. It delineates four streams, of which the earliest originates with Gordon
and Loeb [7]; this stream is also the simplest since it is specialized to single firms,
i.e., one-sided settings. Hausken [14], working in the one-sided setting, general-
izes the Defender’s function S(z, v) in Gordon and Loeb to have marginal returns
on investment to be increasing initially and then decreasing, and shows that the
1/e rule is violated and also obtains four different types of optimal investment
policies. Huang et al. [15] consider risk-averse Defenders and obtain results that
apply when risk is extended to apply to securities.

Brown et al. [16] focus on models in the two-sided, Attacker-Defender setting
for two and three sequential stages in which the objective functions represent
costs and are linear in the efforts, and the solution methods are based on LP,
LP relaxations and Mixed Integer Linear Programs.

For results from a detailed study of the costs of cybercrime see Anderson et
al. [17]. The relationships between the average cost of an attack and the expected
gain to the Attacker, and similar estimates for the Defender, are examined in
Tiwari and Karlapalem [18]. Data from Japan’s municipalities on vulnerabilities
and investments are in Tanaka et al. [19].

Our paper does not undertake the analysis of networked systems, but it may
provide a springboard for future work, and we take note of works with intersect-
ing interests. Gueye and Marbukh [20] study a game in which the Defender selects
a spanning tree from a network, and the Attacker selects a link to delete. Dziu-
binski and Goyal [21] combine graph theory with economics to obtain important
insights on how to design optimally defensible networks in the Attacker-Defender
setting. Strategic attacks, as in our paper, and random attacks yield different
network structures; the paper does not address computations. Goyal and Vigier
[22] and Acemoglu et al. [23] address contagion generated by a successful attack.
In the former work a critical role belongs to the “network value function", e.g.,
its asymptotic behavior as the network becomes large determines the optimal
network topology. The latter work, which considers a substantially broader class
of networks, asks when are investments below or above the socially optimal, and,
in an important result, it is shown that the nature of the externality is a key
determinant.

Game-theoretic analyses are pervasive in network security, indeed all the
aforementioned papers fall in this category. Less so are sequential Stackelberg
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games, see Breton et al. [24], which model multiple stages; our model, for in-
stance, is a special case.

A broad overview from the systems perspective of cybersecurity, including
reconnaissance techniques which an Attacker may deploy to form estimates, is
in Mazurczyk and Caviglione [25]. In the computer science literature on cyber-
security, attack graphs provide a natural framework and are frequently used, see
Wang et al. [26] for an example. Moving Target Defense is an effective but costly
technique wherein the Defender reconfigures its network periodically, see Lei et
al. [27] for a survey of the literature.

The focus of Danskin [6] is on the technical difficulty that arises in Min-
Max problems when the solution to the inner maximization is not differentiable.
Danskin overcomes the problem by introducing directional derivatives, and goes
on to obtain a general Lagrange multiplier principle for Min-Max problems. We
note that the technical difficulty does not arise in our work, and, beyond the
model, our works diverge.

To the best of our knowledge the results in this paper on a class of Attacker-
Defender, two-sided models, the non-convex properties of the resulting objective
function in the Min-Max optimization, and the implications of these properties
on the structure of optimal investment policies have not been considered in prior
work.

2 Preliminaries

2.1 Basic Variables, Functions, and Properties

We define the following variables related to the Defender’s system:

1. s = system breach probability, also referred to as (system) vulnerability.
2. v = initial breach probability, also referred to as initial (system) vulnerability.
3. z = incremental "effort" by system Defender to mitigate system vulnerabil-

ity. We distinguish effort from its financial cost to the Defender, with the
latter given by dz, where d is the Defender’s unit cost of effort.

4. s = S(z, v), S(., .) is the system breach probability function.

We make the following assumptions on the properties of the system breach
probability function. Gordon-Loeb [7] also assume A1–A5, whereas A6 is new.

A1. S(z, 0) = 0, ∀z ≥ 0

A2. S(0, v) = v

A3. Sz(z, v) =
∂S(z,v)

∂z < 0, ∀z and ∀v ∈ (0, 1)

A4. Szz(z, v) > 0, ∀v ∈ (0, 1)

A5. S(z, v) → 0 as z → ∞, ∀v ∈ (0, 1)

A6. Sv(z, v) > 0, ∀z and ∀v ∈ (0, 1), i.e., system vulnerability increases with
initial vulnerability.
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We define the effort function Z(., .), where z = Z(s, v). The function Z is the
inverse of the function S, i.e., z ≡ Z(S(z, v), v), ∀z ≥ 0. Our analysis is focused
on the effort function and z, from which the behavior of the breach probability
s can be inferred.

Examples Gordon-Loeb [7] define two classes of system breach probability
functions, I and II. We have found these functions to be very useful in illustrating
our analysis. We refer to these function classes as GL Class I and GL Class II.

1. GL Class I. S(z, v) = v
(αz+1)β

, α > 0, β ≥ 1; Z(s, v) = 1
α

(
v
s

)1/β − 1
α

2. GL Class II. S(z, v) = vαz+1, α > 0; Z(s, v) = 1
α

log s
log v − 1

α (natural log)

Since ∂Z(s,v)
∂s = Zs(s, v) =

1
Sz(z,v)

, hence from A3,

Zs(s, v) < 0 (2.1)

We will interpret −Zs(s, v) =
∂Z

∂(−s) as the (positive) marginal effort for invul-
nerability (for fixed initial vulnerability). Analogously,

Zv(s, v) = −Sv(z, v)

Sz(z, v)
> 0 (2.2)

is the marginal effort for maintaining invulnerability with increased initial vul-
nerability, with positivity following from A3 and A6. Similarly,

Zss(s, v) = − Szz(z, v)

{Sz(s, v)}3
> 0 (2.3)

Hence, Z(s, v) is a convex, decreasing function of s. We also assume,

A7. Zsv(s, v) < 0 , (2.4)

i.e., the marginal effort for invulnerability increases with increased initial vul-
nerability. We call this property "effort complementarity", which is distinct from
convexity. It is analogous to "cost complementarity" in the economics of multi-
product firms, which is the property that the marginal cost of producing product
j decreases with increased production of product i, i ̸= j [28,29].

Furthermore, we assume the following factored form of Zs(s, v):

A8. Zs(s, v) = −f(v)

g(s)
(2.5)

where, following (2.1), f(v) and g(s) are positive ∀v, s ∈ [0, 1], and are unique
to within constants of proportionality. It follows from (2.5) and (2.4),

fv(v) > 0 and gs(s) > 0 (2.6)

The GL functions satisfy the above assumptions and the factored form.
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(i) GL Class I.

f(v) = v1/β ; g(s) = αβs(β+1)/β (2.7)

Zs(s, v) = −v1/β

αβ

1

s(β+1)/β
; Zsv(s, v) = − 1

αβ2

1

v(β−1)/β

1

s(β+1)/β
(2.8)

(ii) GL Class II.

f(v) = − 1

log v
; g(s) = αs (2.9)

Zs(s, v) =
1

α(log v)s
; Zsv(s, v) = − 1

α
(
log2 v

)
vs

(2.10)

2.2 Log Convexity

We assume that S(z, v) is log-convex in z for all fixed v, i.e., logS(z, v) is convex,
which translates to, γ(z, v) ≥ 0 where,

γ(z, v) =
Szz(z, v)S(z, v)

{Sz(z, v)}2
− 1 (2.11)

We have introduced the function γ(z, v) to parameterize log-convexity of
S(z, v). Making use of the factored form in (2.5), it follows that,

γ(s, v) =
sgs(s)

g(s)
− 1 (2.12)

Henceforth we abbreviate γ(s, v) to γ(s); it has an important role in our analysis.
It was shown independently by Baryshnikov [8] and Lelarge [9] that Gordon

and Loeb’s celebrated 1/e rule [7] holds if the system breach probability function,
S(z, v), is log-convex, and also that both Class I and II functions used by Gordon
and Loeb to demonstrate the rule are log-convex. Note the following:

(i) GL Class I. γ(s) ≡ 1/β, a constant. Gordon-Loeb [7] require β ≥ 1, so that
γ ≤ 1. In general, we will not place this restriction. However, there are some
significant qualitative differences that appear in the analysis depending on
whether γ ≤ 1 or γ > 1. Hence, when the need arises to assume γ ≤ 1,
we will specify "GL Class I with γ ≤ 1", and similarly for γ > 1, it being
understood that otherwise γ is any nonnegative constant in GL Class I.

(ii) GL Class II. γ(s) ≡ 0.

For g(s) = O(sδ) as s → 0, it may be verified from (2.12) that

γ(s) ∼ δ − 1. (2.13)

Hence,
δ > (=) (<) 2 if γ(0) > (=) (<) 1. (2.13)

The above dependence of the asymptotic behavior of g(s) as s → 0 on the value
of γ(0) is important in the subsequent analysis.

In Sec. 5.2, we define the class of functions γ(s) for which our results hold,
and it is broad and extends beyond constants and the constraint γ(s) ≤ 1.
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3 Attacker and Defender: Model, Actions, Reactions

3.1 Model of Attacker

Let y represent a generalized measure of the aggregate effort that the Attacker
deploys. In the simplest representation, y is the number of attempts, equal to
the effort, that the Attacker makes to breach the Defender’s system. Departures
from this simple representation include breaching attempts of varying intensities.
In the base representation where y is the number of independent attacks, the
total cost to the Attacker will be assumed to be cy, where c is the Attacker’s
cost for unit effort. For a given system vulnerability s, we assume,

Pr[system is breached ] = T (s, y) = 1− (1− s)y (3.1)

The key assumption that we are making is that the Attacker’s attempts are
independent Bernoulli trials with probability of system breach in each trial given
by s, and that the Attacker is successful if at least one of the attacks succeed in
breaching the system.

We let G denote the financial gain that the Attacker realizes if it succeeds.
The Attacker’s net expected gain for system vulnerability s and deployed effort
y is therefore,

GT (s, y)− cy (3.2)

We are adopting features of the model in Danskin [6], who states (in Chapter
4, Sec. 4), that the model was first posed during the Cold War at the RAND
Corporation around 1951. In Danskin’s model there are several types of attack
units, whereas here there is only one, and the probability that an individual
attack unit gets through is a function of the number of attack units, whereas
here it is independent.

3.2 Attacker’s Optimization Problem

The rational, risk-neutral Attacker will act to maximize its net expected gain,
i.e.,

max
y≥0

[
GT (s, y)− cy

]
(3.3)

The Attacker is assumed to know s, which, for instance, it may estimate by
deploying techniques described in Mazurczyk and Cavaglione [25]. Let y∗(s)
denote the solution to the Attacker’s optimization problem, and let T ∗(s) =
T (s, y∗(s))

3.3 Model of Defender

Our model assumes that the Defender has knowledge of the Attacker’s decision
process and that the Defender is oblivious to risk, and hence its decisions are
based on expected values only.

Let L denote the financial loss to the Defender in the event of a system
breach. Since d is the unit cost of the effort, the net financial cost of mitigation
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is dz. Following the Attacker’s actions and the Defender’s mitigation efforts, the
Defender’s net expected financial loss is,

LT ∗(s) + dz (3.4)

which, upon substitution of the system breach probability function yields,

LT ∗(S(z, v)) + dz (3.5)

3.4 Defender’s Optimization Problem

The rational, risk-neutral Defender will implement the solution to the following
problem,

min
z≥0

[
LT ∗(S(z, v)) + dz

]
(3.6)

We find it convenient to conduct the analysis with the decision variable s instead
of z, which requires the replacement of the system breach probability function
S(z, v) by the effort function Z(s, v), which has been introduced in Sec. 2.1. Since
z and s are related by invertible functions, this transformation should not pose
any fundamental problem. After the switch, the Defender’s problem becomes,

min
s≤v

Φ(s, v) (3.7)

where,
Φ(s, v) = LT ∗(s) + dZ(s, v) (3.8)

We denote the solution to (3.7) by s∗(v), also z∗(v) = Z(s∗(v), v), which gives
the Defender’s optimum mitigation effort, and Φ∗(v) = Φ(s∗(v), v).

4 Attacker’s Problem: Solution and Discussion

4.1 Solution

The first order condition for optimality in the problem in (3.3), which is obtained
by setting to zero the derivative of the objective function, yields,

{− log(1− s)}(1− s)y =
c

G
(4.1)

The left-hand side is monotonic, decreasing in y and approaches 0 as y → ∞.
Hence, if its value for y = 0 is greater than c/G, then a unique positive solution
y∗(s) exists, and otherwise the solution to the Attacker’s problem in (3.3) is
y∗(s) = 0.

Define sP to be the value of s such that the left-hand side of (4.1) at y = 0
is equal to c/G, i.e,

sP = 1− e−c/G (4.2)

We summarize here:

Proposition 4.1. If s > sP , then a unique positive solution to y∗(s) to the
Attacker’s Optimization Problem in (3.3) exists, and satisfies,
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(1− s)y
∗(s) =

1

(G/c){− log(1− s)}
(4.3, i)

i.e.,

y∗(s) = −
log

[
log

{
(1− s)−G/c

}]
log(1− s)

(4.3, ii)

If s ≤ sP , then y∗(s) = 0.
Also, the probability of a system breach that is a consequence of the At-

tacker’s optimal effort,

T ∗(s) = 1 +
1

(G/c){log(1− s)}
for s > sP (4.4, i)

= 0 for s ≤ sP (4.4, ii)

In the Attacker’s problem, the system breach probability s is given and as-
sumed to satisfy the constraint s = S(z, v) ≤ v, the initial vulnerability. Note
that if v ≤ sP then s ≤ sP . To avoid trivialities, we assume that v > sP .

4.2 Discussion, the Price of Deterrence

We examine the behavior of y∗(s), the Attacker’s optimal effort as a function of
s, the system vulnerability, for s > sP .

0.0 sP s+ 0.5 v 1.0
0.0

2.0

y+ y * (s)

(a) y∗(s) vs. s

0.0 z+ 5.0 zP 10.0
0.0

2.0

y+ y * (S(z, v))

(b) y∗(S(z, v)) vs. z

Fig. 4.1: Visualizing rational Attacker investments and the Price of Deterrence;
GL Class I, v = 0.75, L = G = 10, α = 1, β = 1, c = d = 1; −→ y+ ≈ 3.68,

s+ ≈ 0.24, z+ ≈ 2.15, sP ≈ 0.10, zP ≈ 6.88

Differentiating the expression in (4.3, ii) with respect to s yields an expression
for dy∗(s)

ds from which it may be inferred (the detailed proof is omitted), for
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s > sP , that as s increases, y∗(s) is initially monotonically increasing, reaches a
stationary point, which we denote by s+, and is thereafter monotonic, decreasing,
as depicted in Fig. 4.1. We let the maximum value of y∗(s) be y+, i.e., y+ =
y(s+). The following result explicitly identifies s+ and y+.

Proposition 4.2. The Attacker’s maximum effort over all system vulnerabili-
ties, y+, is 1/e, i.e., about 37% of the effort justified by the potential gain from
system breach. This follows from,

s+ = 1− e−ec/G, y+ =
G/c

e
, so that (1− s+)

y+ =
1

e
(4.6)

This result resembles Gordon-Loeb’s 1/e result, and is due to the log-concavity
of T (s, y) in (3.1) with respect to y.

The corresponding behavior of y∗(Z(s, v), v) as a function of the Defender’s
effort is readily inferred. We let zP be the effort corresponding to sP ,

zP = Z(sP , v), i.e., S(zP , v) = sP , (4.7)

When G/c is large, as may be considered typical, then from (4.2), (sP )(G/c) ≈ 1.
Now, sP is the probability of system breach from the Attacker’s unit effort, and
G/c is the maximum effort that a rational Attacker will deploy. Hence, in this
approximation regime, when s ≤ sP , the expected number of successful system
breaches falls below one even when the Attacker mounts the maximum effort
that is justified by the potential gain from a system breach. Consequently, in
this case the rational, risk-neutral Attacker will not mount any attack.

We call zP the "Price of Deterrence" (strictly it is dzP ). That is, if z > zP ,
then the system breach probability falls below the threshold that justifies the
Attacker to mount any attack.

It is important to keep in mind that the Price of Deterrence also depends on
the initial vulnerability v, as is evident in (4.7).

Arms Race Analogy We draw attention to the Price of Deterrence, zP
in Fig. 4.1b: as the Defender’s investment z increases, the Attacker’s optimum
effort, y∗, initially increases, i.e., the protagonists are locked in a classic arms
race. However, if the Defender’s investment exceeds z+, the Attacker’s economic
interests no longer justify matching the escalation, and its investments decline.
If the Defender’s investment reaches the Price of Deterrence, then the Attacker
throws in the towel, and cuts off all further investments. Note that the entire
cycle consisting of the Attacker’s expanding investments, followed by the partial
withdrawal and finally total withdrawal while facing a Defender with superior
economic resources is symptomatic of the point of view that economics is a
substantial strategic factor in cybersecurity.

It is tempting to conjecture that the behavior in Fig. 4.1b mirrors the US
– Soviet Union arms race during the Cold War until the economic collapse and
dissolution of the Soviet Union (“Part of the logic proceeding with SDI was that,
eventually, the arms race would cripple the Soviet economy. This is in fact what
was happening.” [30]). See also [31].
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5 Defender’s Problem: Analysis and Solution

5.1 Objective and Gradient Functions

Combining (3.8) and (4.4, i) yields the following expression for the Defender’s
objective function for s > sP ,

Φ(s, v) = L

[
1 +

1

(G/c){log(1− s)}

]
+ dZ(s, v) (5.1)

In deriving the derivative with respect to s, the system breach probability, we
take note of the factored form of Zs(s, v) = − f(v)

g(s) in (2.5), to obtain,[
(1− s) log2(1− s)

df(v)

]
∂

∂s
Φ(s, v) =

L/d

G/c

1

f(v)
−D(s) (5.2, i)

where,

D(s) =
(1− s) log2(1− s)

g(s)
(5.2, ii)

Note that the bracketed term on the left-hand side of (5.2, i) is positive for
0 < s < 1, and the separation of v and s in the terms on the right-hand side.
Let,

R =
L/d

G/c
(5.3)

and refer to R as the Effective Loss to Gain Ratio. Now,

Φs(s, v) = (<) (>) 0 if D(s) = (>) (<) R
1

f(v) (5.4)

We refer to D(s) as the "gradient function".

Example We introduce the "universal" function ξ(s) here to illustrate a gradi-
ent function and also because it will be useful later in the analysis:

ξ(s) =
(1− s) log2(1− s)

s
(5.5)

For GL Class II functions, for which g(s) = αs, see (2.9), the gradient function is
D(s) = ξ(s)/α. In the interval [0, 1], the corner points of ξ(s) are ξ(0) = ξ(1) = 0.
The function ξ(s) has the following canonical shape: a unique maximum ξ̂ =
max0<s<1 ξ(s); monotonic, increasing in [0, ŝξ), and monotonic, decreasing in
(ŝξ,1 ], where we have denoted the location of the maximum by ŝξ, i.e., ξ(ŝξ) = ξ̂.
We shall say that such functions have an "inverted-U shape"4. In the example of
ξ(s) in (5.5), ξ̂ ≈ 0.64 and ŝξ ≈ 0.8. Note that such functions are not necessarily
concave.
4 Use of the term "inverted-U" function or relationship has precedents, for example,

see [32].
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5.2 Shape of the Gradient Function

Here we obtain the shape of the gradient function D(s). A key determinant
is the non-negative function γ(s), which was introduced in (2.12). Taking the
derivative of D(s) in (5.2, ii) with respect to s, and making use of (2.12) gives,[

g(s)

log2(1− s)

]
d

ds
D(s) = H(s; γ) (5.6)

where the bracketed term on the left-hand side is positive for s ∈ (0, 1), and (H
for Hessian),

H(s; γ) = −
{

2

log(1− s)
+

1

s

}
− γ(s)

(
1

s
− 1

)
(5.7)

We proceed below with separate analyses for 0 ≤ γ(s) ≤ 1 and 1 < γ(s), s ∈
[0, 1]. Let,

Γ1 = {γ(s) : 0 ≤ γ(s) ≤ 1, and 0 ≤ γs(s), ∀s ∈ [0, 1]}
Observe that γ(s) corresponding to GL Class I functions with γ ≤ 1, and GL
Class II functions are subsumed in the set Γ1.

Proposition 5.1. If γ(s) ∈ Γ1 then the Hessian H(s; γ) monotonically de-
creases, i.e., Hs(s; γ) < 0, s ∈ (0, 1), from non-negative to negative with in-
creasing s, s ∈ [0, 1]. Hence, ∃ unique ŝ ∈ (0, 1) such that H(ŝ; γ) = 0, where
Ds(ŝ) = 0 and Ds(s) > (<) 0 for s < (>) ŝ. In the special case of γ(s) ≡ 1,
ŝ = 0.

The proof is in Appendix A.1. From (5.6), D(ŝ) = max0≤s≤1 D(s), and we let
D̂ = D(ŝ). The proposition establishes that for γ(s) ∈ Γ1, the gradient function
D(s) has the inverted-U shape with the peak value of D̂ at ŝ. In the special case
of γ(s) ≡ 1, the peak is located at ŝ = 0, and the shape of the entire gradient
function D(s), s ≥ 0, coincides with the segment of the general inverted-U shape
to the right of the peak, i.e., s ≥ ŝ.

We can prove that in general D(s) is not concave. This fact gives weight
to the gradient function’s inverted-U shape since this property will prove to
be adequate for deducing key properties of stationary points of the Defender’s
objective function, which is considered in Sec. 5.4.

Next, we investigate the behavior of the gradient function D(s) when the
characteristics of the function γ(s) are complementary to that of Prop. 5.1. Let,

Γ2 = {γ(s) : 1 < γ(s), ∀s ∈ [0, 1]}
Observe that γ(s) corresponding to GL Class I functions with γ > 1 are sub-
sumed in Γ2.
Proposition 5.2. If γ(s) ∈ Γ2, then H(s; γ) < 0 and Ds(s) < 0, ∀s ∈ (0, 1).
Also, D(s) → ∞ as s → 0.

The proof is in Appendix A.1. For γ(s) ∈ Γ2, D(s) → ∞ as s → 0 which
represents a significant qualitative difference from γ(s) ∈ Γ1; D(s) is monotonic,
strictly decreasing for s > 0. We let ŝ = 0.
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We now build on the results of Prop. 5.1 and 5.2 to obtain the shape of the
gradient function for a more general class of functions γ(s),

Γ = {γ(s) : γ(s) ≥ 0, and γ(s) ≤ 1 ⇒ γs(s) ≥ 0, s ∈ [0, 1]} (5.8)

In the analysis of Γ we allow for the possibility of a single cross-over of
behavior from Γ1 to Γ2 to avoid getting immersed in details. Note that if for any
s′, γ(s′) > 1, then no crossing below the γ = 1 level is possible for s > s′.

The following proposition is proved in A.1.

Proposition 5.3. Assume that γ(s) ∈ Γ. If γ(0) > 1, then Prop. 5.2 applies. If
γ(0) ≤ 1, then D(s) is inverted-U shaped with a unique maximum.

An interpretation of the proposition is that if γ(0) > 1, then the shape of
the gradient function is what is expected from Prop. 5.2 for γ(s) ∈ Γ2, and if
γ(0) ≤ 1, then the gradient function is inverted-U shaped, as stated in Prop. 5.1
for γ(s) ∈ Γ1. See examples of the gradient function in Fig. 5.1.

(a) GL Class I (γ = 1.25) (b) GL Class II (γ = 0)

Fig. 5.1: Visualizing D(s) for GL Class I and II functions

5.3 Stationary Points of the Defender’s Objective Function

The stationary points, i.e., local maxima and minima, of the Defender’s objec-
tive function Φ(s, v) for the variable s and fixed v, the initial vulnerability, are
solutions of Φs(s, v) = 0. Therefore, following (5.2, i), the stationary points are
solutions of,

D(s) = R
1

f(v)
(5.9)

If γ(s) ∈ Γ2, then from Prop. 5.2 it is known that D(s) → ∞ as s → 0 and also
that D(s) is monotone, strictly decreasing with increasing s. Hence, a unique
solution s1(v), 0 < s1(v) < 1, exists. We next focus on γ(s) ∈ Γ1 for which,
from Prop. 5.1, D(s) is inverted-U shaped. Since f(v) increases with v, for any
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solution of (5.9) to exist, the initial vulnerability v needs to be sufficiently high.
In fact, any stationary point exists if and only if,

v̂ ≤ v (5.10)

where v̂ is defined by the following relation in which D̂ is the maximum value of
D(s).

D̂ = R
1

f(v̂)
, i.e., v̂ = f−1

(
R

D̂

)
(5.11)

For GL Class I functions, f(v) = v1/β , see (2.7), so that, for γ ≤ 1, i.e., β ≥ 1,
v̂ = (R/D̂)β . For GL Class II functions, recall from Sec. 5.2 that D̂ = ξ̂/α and
f(v) = −1/ log v, hence, v̂ = exp(−ξ̂/(αR)).

Observe that for both Class I with γ ≤ 1 and Class II functions, v̂ is inde-
pendent of initial vulnerability v, and importantly, increases with the effective
loss to gain ratio, R.

If γ(s) ∈ Γ and γ(0) < 1, then there exist two stationary points of Φ(s, v),
denoted s2(v) and s1(v), where,

s2(v) < ŝ < s1(v) if v̂ < v, (5.12)

and, in the special case of v = v̂, s2(v) = ŝ = s1(v). It is easy to see that s1(v)
(s2(v)) increases (decreases) with v.

If γ(s) ∈ Γ and γ(0) > 1, then there is a single stationary point of Φ(s, v),
denoted by s1(v) which increases with v. Hereafter it is convenient to consider
only γ(s) ∈ Γ and γ(0) ≤ 1, and accommodate the case of γ(s) ∈ Γ and γ(0) > 1
by noting that in the latter case ŝ = 0, and consequently s2(v) does not exist in
[0, 1].

Using (5.2, i) to obtain the sign of Φs(s, v) in the intervals defined by the
stationary points, we obtain,

Proposition 5.4. Assume γ(s) ∈ Γ and v is constant. Then,

Φs(s, v) > 0 for s ∈ (0, s2(v))

< 0 for s ∈ (s2(v), s1(v))

> 0 for s ∈ (s1(v), 1)

(5.13)

That is, s2(v) is a local maximum and s1(v) is a local minimum of Φ(s, v) as
s is varied in (0, 1) with v fixed. See Fig. 5.2 for an example.

The above result illuminates a central feature of the objective function, i.e.,
the presence of intervals of local concavity and convexity in one variable (s),
with initial vulnerability (v) adding a separate dimension of complexity.

5.4 Solution to the Defender’s Problem

We compose the solution to the problem stated in (3.7). The main task is to
deduce the implications of the constraint s ≤ v in the Defender’s problem in
(3.7).
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0.0 s2(v) ̂s ŝ(v) ̂.0
s

0.̂5

0.30

0.45

0.60

D̂

D(s)
R ̂
f(v)

(a) D(s);R 1
f(v)

vs. s

0.0 s2(v) s1(v)
s

2.68

2.72

2.76

2.80
Φ(s, v)

(b) Φ(s, v) vs. s

Fig. 5.2: Visualizing criteria for the existence of stationary points in the
Defender’s objective function; GL Class I, v = 0.9, R = 0.6, α = 1, β = 1.2

If v < v̂ then, from (5.2, i), Φs(s, v) > 0, ∀s, and,

Φ∗(v) = Φ(sP , v) = dzP (5.14)

Recall from the discussion in Sec. 4.2 that dzP is the Price of Deterrence. If
v > v̂, then from Prop. 5.4, we need to consider two disjoint cases, v < s1(v),
and s1(v) < v. From Prop. 5.4,

If v̂ < v < s1(v) then Φ∗(v) = min [Φ(sP , v),Φ(v, v)] (5.15)

so that s∗ = sP or v. Since Φ(v, v) is obtained from s = v, i.e., z = 0,

Φ(v, v) = LT ∗(v) = L

[
1 +

1

(G/c) log(1− v)

]
, (5.16)

a positive quantity since we have assumed (see Sec. 4.1) that v > sP . Note
that Φ(v, v) is the Defender’s net expected loss if it makes no effort to reduce
vulnerability from its initial value, and Φ(sP , v) is the corresponding quantity
if it makes the effort necessary to reduce vulnerability to the level where the
Attacker is deterred from making any effort. It is not obvious a priori which is
the superior solution for the Defender. Hence we have (5.17).

In contrast,

If s1(v) < v then Φ∗(v) = min [Φ(sP , v),Φ(s1(v), v)] (5.17)

so that s∗ = sP or s1(v).
We define three "Decision Intervals" (DI) in the range of values of v:

DI 1. v < v̂

DI 2. v̂ < v < s1(v) (5.18)

DI 3. s1(v) < v
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DI 2 and 3 may be empty, e.g., DI 3 is empty if v ≤ s1(v), ∀v. Also, as
we shall see, the DI may be interleaved. To describe the Defender’s investment
decision, we employ the following mnemonics:

1. "all in" to describe Φ∗(v) = Φ(sP , v)

2. "none" if Φ∗(v) = Φ(v, v)

3. "some" if Φ∗(v) = Φ(s1(v), v)

Now, by combining Prop. 5.4 and the constraint s ≤ v, we obtain the following
result for the Defender’s problem in (3.7),

Proposition 5.5. The Defender’s optimal investment decision depends on the
DI in which v exists, as follows: DI 1: "all in"; DI 2: "all in" or "none"; DI 3:
"all in" or "some".

Note the role of the parameter R, the effective loss to gain ratio, in the
Defender’s decision. For instance, since v̂ is monotonic, increasing with R, if R
(and therefore v̂) is sufficiently large then v < v̂, in which case only Interval 1 is
of interest, and the Defender’s decision is "all in".

The above observation on the role of R also illuminates the potential of
spreading false estimates of loss (L) and gain (G) to nudge the adversary to
making damaging decisions. This is a rich line of investigation that, however, is
outside the scope of this paper.

6 Defender’s Optimal Investment Policy

The preceding section has shown how to obtain the Defender’s optimal invest-
ment for any given value of the initial vulnerability, v. Here, we investigate pat-
terns in optimal investment decisions for the entire range of values of v. From
the reader’s perspective, an illuminating component is the illustrations of results
and properties, which are based on Gordon-Loeb’s Class I and II system breach
probability functions. Lastly, this section compares and contrasts the optimum
investment policies that are obtained from the model of Gordon-Loeb and our
model.

6.1 Fixed Point Equations

Section 5.4, and specifically (5.18), has shown that the transitions between De-
cision Intervals (DI) 2 and 3 occur when {s1(v) − v} changes sign, where v is
the initial vulnerability and s1(v) is the unique local minimum of the Defender’s
objective function Φ(s, v) when s, the system breach probability, is varied with
v held constant. Hence, we investigate the condition in which equality holds,
and this leads to the Fixed Point Equation (FPE) below. Since s1(v), when it
exists, is obtained as the solution of the equation D(s1(v)) =

R
f(v) , s1(v) ≥ ŝ, the

transition points in v, i.e., solutions of s1(v) = v, are solutions of the following
FPE,

D(x) =
R

f(x)
, ŝ < x < 1 (6.1)
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Note that any solution of (6.1) will satisfy x > v̂. Since we will not encounter
more than two Fixed Points, we denote the solutions of (6.1) by vL and vH . If
two solutions exist, we assume that v̂ < vL < vH , and if there is only one, then
v̂ < vH .

6.2 Gordon-Loeb Class I and II System Breach Probability
Functions

In the case of GL Class I functions, the FPE is

(1− x) log2(1− x)

αβx(β+1)/β
=

R

x1/β
, ŝ < x < 1 (6.2, i)

or equivalently,
ξ(x) = Rαβ, ŝ < x < 1 (6.2, ii)

where ξ(.) is the "universal" function defined in (5.5).

Proposition 6.1. For GL Class I functions,
(i) If ξ̂ < Rαβ, then no Fixed Point exists, and s1(v) < v, ∀v ∈ (v̂, 1).

(ii) If ξ(ŝ) < Rαβ < ξ̂, then two Fixed Points, vH and vL exist. Moreover
s1(v) < v, ∀v ∈ (v̂, vL); v < s1(v), ∀v ∈ (vL, vH); s1(v) < v, ∀v ∈ (vH , 1).

(iii) If Rαβ < ξ(ŝ), then one Fixed Point, vH , exists. Moreover, v < s1(v), ∀v ∈
(v̂, vH); s1(v) < v, ∀v ∈ (vH , 1).

The proof is in A.2. Recall from Prop. 5.5 that DI 2 corresponds to v̂ < v <
s1(v), and D3 to s1(v) < v.

In the case of GL Class II functions, D(s) = ξ(s)
α , so that D̂ = 1

α ξ̂ and ŝ = ŝξ.
(Recall that ξ̂ ≈ 0.64 and ŝξ ≈ 0.8.) Since s1(v̂) = ŝ, it follows that s1(v̂) = ŝξ.
Also, since D(ŝ) = R

f(v̂) = −R log v̂, it follows that v̂ = exp(−ξ̂
αR ). The FPE in

(6.1) translates to,
ξ(x) = −αR log(x), ŝ < x < 1 (6.3)

Proposition 6.2. For GL Class II functions,

(i) If αR < ξ̂
− log ŝξ

≈ 2.87, then no Fixed Point exists, and v < s1(v), ∀v ∈
(v̂, 1).

(ii) If ξ̂
− log ŝξ

< αR, then one Fixed Point, vH , exists, and s1(v) < v, ∀v ∈
(v̂, vH); v < s1(v), ∀v ∈ (vH , 1).

Proof: It is easy to see that there exists one Fixed Point if and only if,

D(ŝ) <
R

f(ŝ)
, i.e.,

ξ̂

− log ŝξ
< αR

In the absence of any Fixed Point, the sign of {s1(v)−v} is invariant for v ∈ (v̂, 1),
and may be obtained from v = v̂. If a Fixed Point vH exists, the sign of {s1(v)−v}
changes at vH .
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6.3 General Results on the Existence of Fixed Points

We give here a result that holds for γ(s) ∈ Γ1, the set defined in Sec. 5.2, which
subsumes γ(s) for GL Class I with γ ≤ 1 and GL Class II. The result on the
existence of solutions to (6.1) follows directly from the previously established
properties of D(x) and f(x) for x ∈ (ŝ, 1).

Proposition 6.3. Assume γ(s) ∈ Γ1. If,
R

f(ŝ)
< D̂ (6.4)

then there exists a unique Fixed Point, unless R
f(1) = 0, in which case no Fixed

Point exists.

Proof: Recall from Prop 5.1 that D(x) and R
f(x) are strictly decreasing with

increasing x ∈ (ŝ, 1). Note that if (6.4) holds, then D(ŝ) > R
f(ŝ) , and since

D(1) = 0 ≤ R
f(1) , it follows that a solution to (6.1) exists if the latter inequality

is strict, and no solution exists if equality holds.

For GL Class II functions, R
f(1) = 0, and hence from the above proposition, no

Fixed Point exists if (6.4) holds, as also stated in Prop. 6.2.
In general, no Fixed Point exists if R, the effective loss to gain ratio, is

sufficiently large, specifically, R > Rc, where,

Rc = max
0≤x≤1

[D(x)f(x)] (6.5)

When no Fixed Point exists, the Defender’s optimal decision is "all in" and
invariant for all v. This property is evident in the examples in Fig. 6.1a and
6.1b.

6.4 Visualizing Fixed Point Equations

We now graphically illustrate various scenarios related to the existence of Fixed
Points, and also provide corroboration of Prop. 6.1 and 6.2.

Fig. 6.1 shows plots of the left and right-hand sides of the FPE in (6.1). The
role of R is highlighted. Fig. 6.1a and 6.1b are for GL Class I with γ < 1 and
γ > 1, respectively, and Fig. 6.1c is for GL Class II. Observe that for γ > 1,
D(s) → ∞ as s → 0, and Ds(s) < 0, ∀s ∈ (0, 1) as stated in Prop. 5.2.

6.5 Attacker-Defender Model Examples

We proceed to obtain plots of the optimal Attacker and Defender investments
for various initial vulnerabilities, v.

For Fig. 6.2a we consider a GL Class I function where R = 5, 000, α =

0.0001, and β = 1.1. Since the Effective Loss to Gain Ratio, R = L/d
G/c , we let

L = $100, 000, G = $70, 000, d = $1, and c = $3, 500. That is, we assume
that the Defender has more to lose than the Attacker has to gain, and, in the
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R=8000

R=6500

R=5500

R=3500

R=6500

R=8000R=5500

R=3500

(a) β = 1.2, (γ ≈ 0.83)

R=5000 R=10000

(b) β = 0.9, (γ ≈ 1.1)

R=1000 R=4000

(c) γ = 0

Fig. 6.1: Visualizing the existence of Fixed Points of GL Class I and II
functions, and the role of R; α = 0.0001.

simplest representation, a single breach attempt by the Attacker costs $3, 500.
In this case, the local minimum, s1(v), of the Defender’s objective function plays
an important role to induce an "all or some" policy in certain intervals of v. As
v increases, the Defender’s policies transition from "all in", to "all or none",
and then to "all or some" at the v̂ and vH interval boundaries, respectively.
This example highlights the complexity of behavior that arises from our simple
two-sided model.

For Fig. 6.2b consider a GL Class II function where R = 10, 000 and α =
0.0001. Specifically, let L = $100, 000, G = $100, 000, d = $1, and c = $10, 000.
Since no solution to the FPE exists, the Defender’s optimal decisions for all
values of v lie entirely in Decision Interval 2, i.e., it should choose to either pay
the Price of Deterrence or invest nothing.

SomeNoneAll in

(a) GL Class I,
R = 5, 000, α = 0.0001, β = 1.1

All in None

(b) GL Class II,
R = 10, 000, α = 0.0001

Fig. 6.2: Attacker and Defender’s optimal investments and Defender’s decision
types vs. initial system vulnerability, v.
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6.6 Comparisons with the Gordon-Loeb Model

There are several interesting features worth highlighting in Fig. 6.2a and 6.2b. In
contrast to the results from the model of Gordon-Loeb [7], optimal investment
curves here are not guaranteed to be smooth. This reflects the stark transitions
in decision type, e.g., from "all in" to "none", as the initial system vulnerability
is varied.

Furthermore, we see a substantial departure from the celebrated 1/e result
[7]. In fact, the results from our model indicate that a rational, risk-neutral
Defender may find it in its best interest to invest up to the potential loss of L
due to a system breach.5 For an appreciation of these differences, compare the
optimal Defender investment curve for our Attacker-Defender model with that
from the Gordon-Loeb model shown in Fig. 6.3.

0.0 0.2 0.4 0.6 0.8 1.0
Vulnerability (v)

0

20000

40000

60000

80000

In
ve

st
m
en

t (
$)

(a) GL Class I,
R = 5, 000, α = 0.0001, β = 1.1

0.0 0.2 0.4 0.6 0.8 1.0
Vulnerability (v)

Two-Sided Model Defender
Gordon-Loeb Defender

(b) GL Class II,
R = 10, 000, α = 0.0001

Fig. 6.3: Comparison of Defender investments from the Gordon-Loeb and our
two-sided models.

Observe that the inclusion of a rational, risk-neutral Attacker has a profound
impact on the Defender’s investment strategy. We find that, in general, for broad
ranges of the system’s initial vulnerability the optimal investments from the
Gordon-Loeb model [7] underestimate what is necessary to prudently defend
the system. This is because any attack, regardless of severity, serves to increase
system breach likelihood (and therefore increase the Defender’s expected loss) by
some degree. Thus, we argue that it is crucial to consider the goals and resources
of an Attacker so as to capture this far-reaching characteristic of cybersecurity
and arrive at more realistic estimates of investments in system security.

5 Of note is that the upper limit to rational investment is LT (S(0, v)), the De-
fender’s expected loss taking into consideration the reaction of the Attacker, however
T (S(0, v)) may tend arbitrarily close to 1.
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7 Conclusions

We conclude with some observations on directions for future work. We have noted
earlier that the estimates of potential gain (G), loss (L) and unit costs (c, d)
play important roles, via the Effective Loss to Gain Ratio parameter R, in the
determination of the optimal investment policy. It follows that a non-standard
dimension of cyberwarfare is the promotion of false estimates by adversaries,
and a better understanding of how to deal with this possibility will be useful.
We have assumed a risk-neutral Defender, and a question of interest, albeit one
that will introduce added complexity, is the nature of the optimal investment
for a risk-averse Defender. In a similar vein, it will be insightful to obtain the
Defender’s decision based on worst-case analysis to allow for a possibly irrational
Attacker.

The deployment costs of attacks and defense have been modeled as linear
functions of the respective efforts. Realistically the costs may be expected to be
nonlinear, and to also include large fixed costs, which are known to significantly
affect market structures and pricing [33]. It should be worthwhile to delineate
areas in cybersecurity where fixed costs matter and where they do not.

A natural progression of our static problem formulation would be to dynamic,
sequential Stackelberg games. Much is known [24], but not where the focus is
on fundamental understanding in the context of the economics of cybersecurity.
Other avenues for generalizing our model is to networked systems, where attack
graphs provide a possible framework [26]. Similarly, Moving Target Defense [27]
is also a promising direction for generalization.

Appendix

A.1

Proof of Prop. 5.1: Taking the derivative with respect to s,

s2Hs(s; γ) =
−2

{
s2 − (1− s) log2(1− s)

}
(1− s) log2(1− s)

− {1− γ(s)}

− γs(s)s(1− s)

(A1.1)

Now denoting the numerator of the first term on the right hand side (rhs)
by −2F (s), it can be shown that,

F (s) = s2 − (1− s) log2(1− s) > 0, s ∈ (0, 1), (A1.2)
= 0, s = 0.

To see this, observe that F (s) is strictly convex since,
1

2
(1− s)Fss(s) = −{s+ log(1− s)} > 0, s ∈ (0, 1)

Also, Fs(0) = 0, hence Fs(s) > 0, s ∈ (0, 1). Since F (0) = 0, (A1.2) follows.
Using (A1.2) and (A1.1), it follows that if 0 ≤ γ(s) < 1 and 0 ≤ γs(s), ∀s ∈

[0, 1], then Hs(s; γ) < 0, s ∈ [0, 1]. Also, 0 ≤ H(0; γ) and H(1; γ) < 0. Hence
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there exists a unique ŝ ∈ (0, 1) such that H(s; γ) = 0, i.e., Ds(ŝ) = 0 and
Ds(s) > (<) 0 for s < (>) ŝ.

Proof of Prop. 5.2: For 1 < γ(s), s ∈ [0, 1], from (4.6),

[−s log(1− s)]H(s; γ) = 2s+ (2− s) log(1− s)

+ {γ(s)− 1} (1− s) log(1− s) (A1.4)
≤ 2s+ (2− s) log(1− s) (A1.5)
< 0, s ∈ (0, 1] (A1.6)

To see how (A1.6) follows from (A1.5), let h(s) denote the expression on
the rhs of (A1.5), and verify that hss < 0, i.e., h(s) is strictly concave in (0, 1].
Also, hs(0) = 0 and h(0) = 0, which in combination with strict concavity yields
(A1.6).

Since the bracketed term in the lhs in (A1.4) is positive for s ∈ (0, 1], we
have H(s; γ) < 0 and Ds(s) < 0, s ∈ (0, 1]. In the definition of D(s) in (5.2, ii),
note that as s → 0, log2(1−s) ∼ s2, and, from (2.12-2.13), g(s) = O(sδ). Hence,
as s → 0,

D(s) → O(s2−δ) (A1.7)
From (2.13), when γ(0) > 1, δ > 2, and consequently D(s) → ∞ as s → 0.

Proof of Prop. 5.3: Now suppose γ(0) ≤ 1, ∀s ∈ [0, 1], then Prop. 5.2 will apply.
Next, suppose the following alternative: γ(0) < 1 and ∃sc, sc ∈ (0, 1] such that
γ(s) < 1 for s < sc and γ(s) > 1 for s > sc, i.e., there is a cross-over at sc. In
this case, γ(s) > 1, ∀s ∈ [sc, 1]. Continuing with this case,

(i) Since γ(s) > 1, s ∈ (sc, 1], from Prop. 5.2, H(s; γ) < 0. In particular,
H(sc, γ) < 0.

(ii) For s < sc, since γ(s) ≤ 1, and γs(s) ≥ 0, from Prop. 5.1, Hs(s; γ) < 0,
s ∈ [0, sc].

Combining (i) and (ii), since H(0; γ) > 0 and H(sc; γ) < 0, it follows that
∃sB , sB < sc, such that H(sB ; γ) = 0. Hence from (5.6),

dD(sB)

ds
= 0 (A1.8)

Since Ds(s) > (<) 0 for s < (>) sB , D(s) is inverted-U shaped with its
maximum at sB .

A.2

Proof of Prop. 6.1: First we show that,

s1(v̂) = ŝ < v̂ (A2.1)

To see this, note from the defining relation D(ŝ) = R
f(v̂) that,

ξ(ŝ) = Rαβ

(
ŝ

v̂

)1/β

(A2.2)
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since D(s) = ξ(s)/(αβs1/β). Now suppose, contrary to (A2.1), ŝ ≥ v̂. Then from
(A2.2), ξ(s) ≥ Rαβ, which contradicts ξ̂ < Rαβ.

If ξ̂ < Rαβ, then from (6.2, ii), clearly no Fixed Point exists. Now noting
(A2.1), in the absence of any Fixed Point, it must be that s1(v) < v, ∀v ∈ (v̂, 1).
Hence (i) is proved.

Next we show that,
ŝ < ŝξ and ξ(ŝ) < ξ̂ (A2.3)

From the relation between D(s) and ξ(s) given above,

αβDs(s) =
1

s1/β

[
ξs(s)−

1

s
ξ(s)

]
. (A2.4)

Since Ds(ŝ) = 0, it follows that,

ξs(ŝ) =
1

ŝ
ξ(ŝ) > 0 (A2.5)

Hence, from the inverted-U shape of ξ(s) and the fact that its maximum value
of ξ̂ is when s = ŝξ, (A2.3) follows.

If Rαβ < ξ̂, then from the inverted-U shape of ξ(s), it follows that there exist
two solutions, ξ1 and ξ2, to the solution ξ(s) = Rαβ, and we let ξ2 < ŝξ < ξ1.
Making use of (A2.3), the possibilities are,

ŝ < ξ2 < ŝξ < ξ1, and ξ2 < ŝ < ŝξ < ξ1. (A2.6)

In the former case, two Fixed Points exist, vL = ξ2 and vH = ξ1, and in the latter
case only one Fixed Point exists, vH = ξ1. (In the latter case, since ξ2 < ŝ, ξ2
violates the constraint that Fixed Points satisfy.) We can precisely characterize
the separation of the two cases in (A2.6). The two cases correspond respectively
to,

ξ(ŝ) < ξ(ξ2) = Rαβ < ξ̂, and ξ(ξ2) = Rαβ < ξ(ŝ) < ξ̂. (A2.7)

The former case corresponds to (ii) of the Proposition, and the latter to (iii).
In both cases (ii) and (iii), the sign of {s1(v) − v} between the transition

points follows from the number of Fixed Points in each case, in combination
with the sign of {s1(v̂)− v̂}, which has been established in (A2.1).
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