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ABSTRACT

This paper utilizes three large databases to better understand the characteristics of cyber loss

events, especially how to deal with data biases and how cyber losses evolve over time. We first deal

with the problem of report delay with an extended two-stage model in combination with detailed

information in our data. Then we analyze the frequency and severity of different categories of

cyber events (such as malicious and negligent events) using state-of-art statistical methods for the

detection of structural changes. We document that the frequency is increasing rapidly with the

malicious cyber events growing exponentially in the past two decades but there is no significant

change in loss severity. We also explore the tail dynamics and find that the heavy-tailedness of

cyber events is persistent over time. Finally, we develop a conceptual model with the documented

empirical features (delayed information and heavy-tailedness) and show that they lead to signif-

icantly lower insurance demand. This might help explain the low volume of the cyber insurance

market observed today.
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I. Introduction

In 2007, an American department store chain, TJX, was hacked and nearly 94 million credit

card information has been exposed (Swartz 2007). This was the largest recorded data breach

incident at the time, but just several years later, more and more data breach incidents exceeding

this magnitude occur. Among them, Yahoo’s incident in 2013 was the largest, involving nearly 3

billion user accounts (Stempel & Finkle 2017). Not only the extreme cyber events becoming more

and more frequent, but the overall frequency and severity are also changing quickly. For example,

FBI (2020) reports a 300% increase in reported cybercrimes during the COVID-19 period. The

recent report of Smith & Lostri (2020) estimates the cost of global cybercrime at $1 trillion, a more

than 50% increase from the 2018 estimate ($600 billion). Also, recent academic research (e.g.,

Jamilov et al. 2021) emphasizes that cyber risks have increased significantly globally.

Despite the anecdotal evidence illustrating the increasing importance of cyber risk as well as

its dynamic nature, the empirical evidence in the current literature is still relatively limited. The

theoretical work on cyber risk and information security has begun as early as the beginning of this

century (e.g., Gordon & Loeb 2002), but due to the limit of data, the empirical work is at least

one decade lagging behind with Maillart & Sornette (2010) among the earliest works to use data

breach loss information.1 Therefore, we intend to provide a comprehensive analysis of cyber loss

events by utilizing three large cyber databases and discuss the implications of our empirical results.

The two research questions are:

(RQ1): What are the statistical properties of cyber risk and how they are changing over time?

(RQ2): What are the implications for cyber risk management given the evolving cyber threat

landscape?

To address the first question, we focus on three dimensions of cyber risk: frequency, severity,

and tail risk. Before analyzing the time trend of cyber frequency, we first consider the report delay

bias. This relates to the structural delay between the occurrence date and the observation date of

an event, and there is little literature studying report delay for cyber risk due to the limit of data.

Using the unique information in our data, we are able to correct this bias by extending a two-stage

statistical model based on Stoner & Economou (2020). The results show that after accounting for

report delay, the trend of frequency is increasing much faster than what we see in raw data.

Building on the results of bias correction, we study cyber risk frequency, especially to understand

whether there have been fundamental shifts over the years. More specifically, we apply recent

statistical methods (Baranowski et al. 2019) to detect the unknown number of change points in the

time series data of cyber risk. We find that malicious cyber risk has undergone exponential growth

in the past two decades without significant structural change.

1We acknowledge that information security has been an evergreen IT topic before this century, but few of them
are based on the economic (and risk management) perspective. Therefore, we refer to Gordon & Loeb (2002) as one
of the earliest papers in this area.
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We also analyze the dynamics of cyber risk severity. We start by discussing the potential

selection bias and use the implementation of U.S. data breach notification laws to test the severity

of this bias. There is no strong evidence indicating that selection bias is a serious concern in our

data. Then we move on to the analysis of cyber risk severity. Traditionally, the analysis of loss

severity focuses on the first moment of the distribution, but this leaves out useful information.

Following recent advances in statistics (Dubey & Müller 2020), we consider the full distribution

of cyber loss, which provides a more comprehensive understanding. We do not find significant

changes that lead to more severe losses. Rather more and more events with small losses occur,

which prevents the overall loss distribution from shifting to the right.

Given the extreme nature of cyber risks and manifold discussions around their insurability

(e.g., Biener et al. 2015), the tail of the loss severity distribution requires a deeper look. We apply

two commonly used methods to measure the tail index: Hill’s estimator and OLS log-log rank-

size estimator, together with the optimal threshold selection method. We show that cyber risk is

extremely heavy-tailed with infinite mean and variance in most cases. In addition, we propose a

new change point detection method for the tail index based on Ibragimov & Müller (2016) and

show that the tail index for malicious cyber events is decreasing, while the index for negligent cases

is unchanged or even increasing.

To address the second research question, we discuss the implications for cyber risk management

in light of the empirical evidence of cyber risk. We build upon and expand the classical model

of Ehrlich & Becker (1972) where insurance and self-protection are the standard risk management

options for a firm and incorporate two stylized properties of cyber risk: delayed information and

heavy-tailedness. Due to the issue of report delay, the firm may have less accurate and delayed

information compared to the insurer. This can lead to an underestimation of its risk level as

malicious cyber risk is increasing exponentially. In addition, extreme heavy-tailedness limits the

supply of cyber insurance (Ibragimov et al. 2009), and the tail exposure is borne by the firm.

Based on these features, we show that the volume of the cyber insurance market is reduced, which

is consistent with the evidence from Cellerini et al. (2022) that over 90% of cyber losses are not

covered by insurance. Figure 1 presents an overview of our research questions and the main insights

when addressing these questions.

The contribution of this paper is threefold. First, we uncover the empirical properties of cyber

risk and show the dynamics of these properties, advancing the understanding of cyber risk in

addition to the works such as Maillart & Sornette (2010) and Edwards et al. (2016). Second, we

connect the empirical evidence of cyber risk with the theoretical work on information security (e.g.,

Gordon & Loeb 2002; Böhme et al. 2010; and Zhao et al. 2013) and show how the documented

empirical properties can influence the optimal investment in cyber risk management. Lastly, in

many related studies (Maillart & Sornette 2010, Wheatley et al. 2016, Farkas et al. 2021) the

authors have questioned the reliability of data and discussed the potential issues that this can

bring about. But there has no empirical evidence on this issue and we are the first to deal with

data bias related to cyber risk.
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Figure 1. Overview of our paper

The remainder of the paper proceeds as follows. Section II provides more information on the

background of cyber risk and related literature. Section III describes the data and the categorization

of cyber risk. Section IV discusses the statistical methods used for the empirical analysis. Section

V presents the main results on the dynamics of cyber risk. Section VI presents a basic model

incorporating the documented properties of cyber risk and discusses the implications for cyber risk

management. Finally, Section VII concludes.

II. Background

Cyber risk encompasses a broad range of risks to information and information systems, such

as data breaches, ransomware, and system errors. We define cyber risk as “operational risks to

information and technology assets that have consequences affecting the confidentiality, availability

or integrity of information or information systems” (Cebula & Young 2010). Therefore, we consider

cyber risk as a subcategory of operational risk, which enables us to distinguish cyber risk from other

established risk categories and structure cyber risk in line with the classification of operational risk

(Eling & Wirfs 2019).

A. Empirical work on cyber risk

Although there have been works with empirical data before 2010, the data are not actual cyber

events but cyberattack attempts without information on the realization of such attempts (e.g.,

Böhme & Kataria 2006). Maillart & Sornette (2010) is the earliest empirical work on cyber risk

analysis with actual cyber events data, to the best of our knowledge. In addition, we do not
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include the empirical work on estimating the financial impact of cyber events based on event study

approaches (e.g., Kamiya et al. 2021) since they do not focus on the statistical properties of cyber

risk per se.

The early stage of the empirical work focuses on the general statistical properties of cyber risk,

including correlation structure (Böhme & Kataria 2006; Wang & Kim 2009a; and Wang & Kim

2009b) and time trends (Maillart & Sornette 2010; Wheatley et al. 2016; Edwards et al. 2016;

and Romanosky 2016). Starting from Eling & Loperfido (2017), more and more studies begin to

study cyber risk frequency and severity by fitting existing statistical models (Eling & Wirfs 2019;

and Woods et al. 2021) or proposing new frameworks to model cyber risk (Bessy-Roland et al.

2021; Farkas et al. 2021; Sun et al. 2021; Fang et al. 2021; and Zhang Wu et al. 2021). These

works have exploited the available database to show the good performance of their models, and the

basic consensus is that the modeling of severity should be based on heavy-tailed (at least highly

right-skewed2) distributions, although the specific choice of the model is very diverse.3

Still, the study on time dynamics of cyber risk has been scarce and results are inconsistent. For

example, with data period from 2000 to 2008, Maillart & Sornette (2010) show there is a strong

non-stationary growth culminating in July 2006 followed by a stable period afterward. Edwards

et al. (2016) find no evidence of an increasing trend for the size and frequency of data breaches for

data from 2005 to 2015. However, Romanosky (2016) indicates an increasing trend for the number

of cyber events in the same period. Wheatley et al. (2021) also observe an increasing trend for

both frequency and severity in a similar time period, but only specific to hack-type events. More

recently, Jung (2021) shows a breakpoint in 2014 for loss severity data with a stable trend before

2014 and rapid growth afterward. Overall, the results appear to be rather inconsistent and the

difference might be largely driven by different datasets and methodologies. This motivates us to

reconsider the empirical properties over a long horizon with the comparison of three main cyber

databases. We also note that none of the above studies tries to incorporate the bias problems,

which are inherent to all these datasets.

B. The economics of information security and insurance

To deal with cyber risk, it is critical to invest in information security. Gordon & Loeb (2002)

is the first to consider an economic model for the optimal investment in information security and

shows that firms should prioritize the information assets with midrange vulnerabilities as the cost

of increasing safety level can be nonlinear. However, information security does not only depend on

the efforts of one firm. There is an externality for the investment in security as the security level

depends on the minimum effort any firm makes in the same system (Anderson & Moore 2006).

This interdependence among firms is a key feature in shaping the security of information systems.

Due to the complexity of the network structure in the system, game theory is a commonly used

2For example, the results of Woods et al. (2021) show the gamma distribution has better performance, which is
not heavy-tailed distribution but exhibits high skewness.

3A detailed summary of each paper is presented in Appendix .A
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tool to model the interactions among participants (Laszka et al. 2014).

Among the possible risk management mechanisms, insurance is the most studied remedy in

the literature. Gordon et al. (2003) proposes a general framework for cyber insurance by incor-

porating the typical information asymmetry issues related to insurance. Later on, Böhme et al.

(2010) provides a more comprehensive framework for considering all the peculiarities of cyber risk:

interdependent security, correlated risk, and information asymmetries. In this framework, there

has been extensive literature on the optimal security level with insurance, such as cyber insur-

ance as an incentive (Bolot & Lelarge 2009), competitive market and security level (Shetty et al.

2010), self-insurance and self-protection (Johnson et al. 2011), managed security services (IT se-

curity outsourcing) as an alternative (Zhao et al. 2013), and fines and rebate corrective treatment

(Naghizadeh & Liu 2014), etc. 4

However, there is little research connecting the theoretical work on information security with

the empirical work on cyber risk. This motivates us to fill the gap by first documenting the

empirical properties of cyber risk and then discussing the implications for cyber risk management

and information security.

III. Data

A. Data on cyber loss

We look at three sources of data for the analysis of cyber risk. All data focus on events that

occur to legal entities (firms, public and non-profit institutions) rather than individuals, and contain

two types of losses. The first type is the amount of information measured by the number of records

or affected accounts. The second type is the monetary loss arising from the incident, such as first-

party loss including the value of the lost records or the cost of business interruption, and third-party

loss including the payment to affected customers and fines in case of violation of regulations.

The first data source is from Advisen. Their database collects information from multiple publicly

available sources such as government websites (Securities & Exchange Commission, Federal Trade

Commission, Federal Communications Commission, State data breach notification websites, etc.)

and other sources including keyword-based alerts, official court and litigation sources, and other

internet information. The magnitude of the observations in the database is over 150,000, while

more than 80% of the cases are from the U.S. and the rest are from 177 different countries. Since

the database creates different records for different kinds of losses arising from one incident such

as direct damage and legal costs, we aggregate the original data resulting in 111,253 incidents for

further analysis. Although the magnitude of cyber events in this database is large, the information

on financial loss is relatively scarce. After cleaning the data and using the sample after 2001,5

we have 5,789 incidents with known financial loss and 90,821 incidents with the known number of

4See Marotta et al. (2017) for a more comprehensive summary of cyber insurance literature.
5We restrict the sample to the time period from 2001 since cyber risk only becomes a serious issue in the 21st

century and the data in the last century are very sparse. This also applies to other data sources.
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affected accounts.

The second data source is SAS OpRisk Global data, which is the world’s largest database on

publicly reported operational losses. This database contains more than 35,000 operational events

in excess of US$ 100,000 for different countries and industries. There is no classification for cyber

risk, so we cannot extract cyber events directly from the data. Therefore, we follow Eling & Wirfs

(2019) and exploit text mining to extract cyber-related events. This results in 2,123 observations

of cyber events and 18,287 observations of non-cyber operational events after removing the sample

before 2001 (we refer to this subsample as the operational risk sample afterward) in our analysis.

The last source of data is from the non-profit organization Privacy Rights Clearinghouse (PRC),

a database that has been frequently used in the literature (e.g., Kamiya et al. 2021; Farkas et al.

2021; and Bessy-Roland et al. 2021). It collects information about breach events from government

agencies and verifiable news sources starting from 2005. This data contains 6,733 records (with

non-zero ID losses) up to the end of 2019. The major difference from the previous two data sources

is that this database focuses only on data breach events and does not provide the financial loss

amount for each case. Therefore, we will use this database for the analysis of risk frequency and

the number of records breached.

Although there are three different databases, they are connected with each other as they all

focus on the same area, cyber risk. We study these databases separately without merging them

since we aim to find the general pattern of cyber risk that is persistent across different sources and

categories, and the comparison of three data sources reduces the potential bias in each source of

data.

B. Categorization and descriptive statistics

To disentangle cyber incidents of different kinds, we consider four categories following and

expanding existing literature such as Edwards et al. (2016). The first category covers malicious

cases, which are defined as cyber incidents that are initiated by individuals or institutions with

malignant intentions against the victims, such as hackers infiltrating the system of the victim firms

or internal employees stealing confidential information to gain profits. The second category is

negligent cases and includes cyber incidents that do not involve a malicious third party, such as

systems errors due to negligence or unintentional disclosure of consumer information. The third

category is the violation of privacy (we refer to this as “privacy” afterward). This category is

defined as the cyber incidents that involve the intentional misbehavior of the firm regarding the

information of its counterparties (mostly their clients), either individuals or organizations. This

type of incident does not have direct damages to the firms but may lead to lawsuits and fines as a

violation of laws or regulations related to privacy. The last category includes all remaining cyber

incidents, and we refer to them as “others”. This category includes cases with unknown reasons or

the ones that are directly caused by factors outside cyberspace such as natural disasters or physical

damage. Details on the categories can be found in Appendix .E.

Table I summarizes the key statistics of each type of cyber incident from three databases
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(and the operational risk sample in SAS). In Advisen, there are only around 5% to 10% of the

incidents among each category where the information on financial losses is known, and around 80%

of incidents where the information on the affected counts is available. The financial loss of malicious

cases is more severe compared to the loss of negligent cases, but the affected counts are higher for

negligent cases compared to malicious ones, although the difference is not large.

In SAS, we find that the magnitude of losses is higher than the case in Advisen, which is related

to the fact that the SAS data only includes cases with losses of more than US$ 100,000. Also,

negligent cases lead to higher loss severity compared to malicious cases, which is different from

the Advisen data. This might be explained by the composition of the two samples, as the Advisen

sample includes more cases related to unintentional disclosure which results in lower financial losses

compared to others.

In the PRC data, malicious cases have a higher number of records lost or affected relative to

negligent cases. This is different from the Advisen data as the PRC data focuses mainly on data

breaches and thus has in general a higher loss related to the number of records. In addition, the

term “affected counts” and “number of records” in this section are basically the same. There

is only a slight difference in the case of privacy violation where “affected counts” includes the

number of individuals whose personal information was not breached but misused. As we focus on

the malicious and negligent cases in the following analysis, this difference should not affect our

comparison. Albeit of the difference in the size and type of losses across different databases, the

loss distributions are all heavily skewed as the median and mean values are different.

IV. Methodology

A. Report delay

Reliable data are crucial for the analysis of cyber risk, but the current databases are potentially

biased (such as the database of Advisen and other commercial databases). Hence, empirical studies

without bias correction may only lead to partial or even incorrect conclusions about cyber risk.

We aim to apply recent methods from the field of statistics to identify and correct the potential

bias in the data before conducting further statistical analysis. One main problem is report delay,

which is the case where the total observable number will only be available after a period of time.

Therefore, before the total number becomes available, we can only observe incomplete data. This

can be detrimental to the analysis of time dynamics and lead to misinterpretation of the actual

number of events. In the case of cyber risk, this problem is common since many events are noticed

and made public after a long time. Also, a delay may occur when the database cannot update the

records in time due to limited resources invested in maintenance.

To model report delay, we follow the work of Stoner & Economou (2020) and extend their

framework to include two stages that are unique in the Advisen dataset.6 The Advisen dataset is

6The problem of report delay is closely related to the claims reserves problem in actuarial science. Two of the
most common methods in the area are the distribution-free chain-ladder model (Mack 1993), and the overdispersed
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Table I Summary statistics of three databases

Sample size Number
of cases
with known
losses

First
quantile

Mean Median Third
quantile

Standard
devia-
tion

Advisen-loss amount ($Million)
Malicious 53317 2476 0.02 17.83 0.15 1.11 271.39
Negligent 17845 357 0.02 15.21 0.12 0.61 123.01
Privacy 36285 2738 0.01 6.68 0.05 1.26 117.01
Others 9607 218 0.02 13.72 0.18 0.83 169.52

Advisen-affected counts (Million)
Malicious 53317 38985 0.00 1.17 0.00 0.00 33.54
Negligent 17845 14500 0.00 1.81 0.00 0.00 84.89
Privacy 36285 29270 0.00 0.25 0.00 0.00 14.53
Others 9607 8066 0.00 0.08 0.00 0.00 1.43

SAS-loss amount ($Million)
Malicious 1451 1451 0.40 27.21 1.23 4.34 260.86
Negligent 516 516 0.48 57.21 2.70 16.30 247.94
Privacy 80 80 0.80 20.48 4.48 21.22 35.42
Others 76 76 0.36 40.69 1.26 6.80 214.42

SAS (operational risk)-loss amount ($Million)
Malicious 5736 5736 0.45 40.99 1.58 7.18 383.01
Negligent 12551 12551 1.09 116.85 5.08 28.41 1100.80

PRC-number of records (Million)
Malicious 3207 2011 0.00 3.63 0.00 0.02 70.15
Negligent 1861 1553 0.00 1.69 0.00 0.01 36.61
Others 3858 3169 0.00 0.14 0.00 0.01 2.63

Note:
This table presents the summary statistics of different cyber categories from three databases
(including the operational risk data from SAS as a comparison afterward).
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the main focus in this part since it has the detailed timeline of each incident, from the event date

to the date of the first notice, until the date of entry into the database. This unique feature allows

us to capture two delay mechanisms.7

The reason we choose the method from Stoner & Economou (2020) is that it provides high

accuracy by jointly modeling the delay mechanism and the total count number. Traditionally, the

task of correcting the delayed reporting has been separated from the task of forecasting but this

ignores the joint uncertainty in the incidence of the total count and the presence of delay. For

example, a low number of cyber cases in month t may have resulted from a temporal decreasing

trend or a low reported number in this period or both. Therefore, it is important to jointly model

these two mechanisms.

Three models are considered in this paper, a generalized linear model (GLM) (Salmon et al.

2015), a generalized Dirichlet-multinomial hazard model (GDM hazard), and a generalized Dirichlet-

multinomial survivor model (GDM survivor) (Stoner & Economou 2020). In the empirical part,

we first compare the three models for their in-sample performance and then apply the best model

for bias correction.

Let yt be the total observable count at time t and after some delay unit (months in our case) a

proportion of yt, zt,d, has been reported in this period, where d is the number of months delayed.

This means that
∑D

d=1 zt,d gets close to yt as the total number of months D increases.

The model based on the GLM framework starts with a negative-binomial (NB) distribution for

yt:

yt ∼ NB(λt, θ); log(pt,d) = g(t, d),

where λt is the expected rate of occurrences and θ allows for overdispersion, the multinomial

probability pt,d, which is the expected proportion of yt that will be reported at delay d, is modeled

via a log-link, and g(t, d) represents a combination of covariate effects. Therefore, the marginal

distribution for zi is also NB:

zt,d ∼ NB(µt,d = pt,dλt, θ); log(µt,d) = ι+ αt + ηt + ψd + βt,d,

where αt is a penalized cubic spline to capture nonseasonal variation, ηt is a penalized cyclic cubic

spline to capture within-year temporal effect, βt,d is intended to allow for temporal changes of delay

mechanism, and ι and ψd are fixed effects.

Poisson model (Renshaw & Verrall 1998). A more detailed summary of the literature in actuarial science can be
found in (Taylor 2019). There are many works generalizing these two models, and it is easy to reach the GLM model
we mention later from Mack’s work. Therefore, the two areas are connected, but there are also differences. One of
them is that the focus of actuarial science is on the aggregate claim amount which is the multiplication of the number
of claims and severity of claims, while the report delay problem mostly focuses on the number or frequency of the
events/cases. In our case, the information on the financial loss of the events is scarce compared to the number of
events, thus we only focus on the report delay issue for the frequency data in this section.

7SAS OpRisk database only has the date of occurrence (the year when the incident started) and the date of
entry, while the PRC database contains only the date of occurrence. Therefore, we choose Advisen data for the main
analysis and SAS data for comparison.
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Different from the GLM framework, the models based on GDM are designed to account for

heterogeneity in the delay mechanism and appropriately separate variability and uncertainty in the

delay mechanism from the model of count number. The GDM hazard model is defined by:

yt ∼ NB(λt, θ); log(λt) = ι+ αt + ηt;

zt | yt ∼ GDM(νt,ϕ, yt); log(
νt,d

1− νt,d
) = ψd + βt,d,

where νt,d is the expected proportion of counts that will be reported at delay d out of those which

are yet-to-be-reported and ϕ controls for dispersion. In this model, the delay mechanism is modeled

through the difference of temporal structure in the proportion of reported cases across delay levels.

The GDM survivor model applies a different way of modeling the delay mechanism:

yt ∼ NB(λt, θ); log(λt) = ι+ αt + ηt;

zt | yt ∼ GDM(νt,ϕ, yt); probit(St,d = ψd + βt);

νt,d =
St,d − St,d−1

1− St,d−1
,

where St,d is the expected value of the cumulative proportion of cases at time t for delay level

d. Compared with the hazard model that considers a structure for each delay level, this method

models the delay structure for each time point, which allows for any number of delay levels.

The models above provide flexible ways of modeling delay structures for cyber risk, but how to

connect two delay stages in our cyber risk data remains a problem. Given that the data we have

are at the second stage as defined above, we could back trace the original trend with available data.

In the second stage, assume that for the time of first notice t, the number of total cases is at but

is not fully available. Suppose after D months all the cases will be included in the database, but

for now, we only have data for D′ months. Therefore, after applying the methods defined above,

we can estimate the number of total cases as

ât =

D′∑
1

at,d +

D∑
D′+1

ˆat,d,

where at,d is the number of cases reported in delay time d, while ˆat,d is the estimated number of

cases in delay time d.

Additionally, the correction ratio qt is defined as the estimate of the actual total number divided

by the available number at time t:

qt = ât/

D′∑
1

at,d.

This correction ratio can be further applied to the first stage. When considering the delay structure

between the accident date and the first notice date, the number of cases reported bt,d is biased due

to the delay in the second stage. Therefore, we can adjust this bias with the correction ratio:
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˜bt,d = bt,d ∗ qt+d. After the adjustment, we apply the models above to the database we have to

account for first-stage bias, which provides us with the corrected results of cyber risk.

B. Time dynamics of loss frequency

We study loss frequency and in this context focus on the estimation of change points over the

period. There is extensive literature on change points detection methods (Truong et al. 2020),

which can be categorized based on their cost functions, search methods, and constraints. But the

literature mostly focuses on the problem under the assumption of piecewise-constant parameters.

However, cyber loss frequency is not likely to follow this assumption due to the increasing trend.

Therefore, we consider one newly proposed generic approach of detecting an unknown number

of features occurring at unknown locations, narrowest-over-threshold detection (Baranowski et al.

2019). 8 This method shows low computational complexity, ease of implementation, and accuracy

in the detection of the feature locations while allowing for non-constant time trends.

In this method, consider the model

Yt = ft + σtϵt, t = 1, ...T,

where ft is the signal, σt is the noise’s standard deviation at time t, and ϵt follows standard normal

distribution. We further assume that (ft, σt) can be divided into q + 1 segments with q unknown

unique change points 0 = τ0 < τ1 < ... < τq < τq+1 = T . The structure of (ft, σt) is modeled

parametrically by a local real-valued d-dimensional parameter vector Θj , where d is known and

typically small.

In the first step, we randomly draw subsamples such as (Ys+1, ..., Ye)
′, where (s, e) is drawn

uniformly from the set of pairs of indices in {0, ..., T − 1} × {1, ...T}. The generalized likelihood

ratio (GLR) statistic for all potential single change points within the subsample is

Rb
(s,e] = 2log[

supΘ1,Θ2{l(Ys+1, ..., Yb; Θ
1)l(Yb+1, ..., Ye; Θ

2)}
supΘl(Ys+1, ...Ye; Θ)

],

where l(Ys+1, ...Ye; Θ) is the likelihood of Θ given (Ys+1, ..., Ye)
′. Based on this statistic, we pick

the maximum R(s,e](Y ) = maxb∈{s+d,...e−d}Rb
(s,e].

In the next step, all R(sm,em](Y ) for m = 1, ...M is tested against a given threshold and among

the significant results, the one corresponding to the interval (sm∗ , em∗ ] with the smallest length will

be chosen. This step can be repeated recursively to find all the possible change points. For more

technical details, we refer to Baranowski et al. (2019).

C. Time dynamics of loss severity

Traditionally, the analysis of loss amount in the time dimension is reduced to the analysis of

univariate time series such as average loss severity. Although this is a simple and efficient way

8We compare the results of alternative methods in Appendix .D and show the main method is robust.
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of understanding the dynamics of loss, we are leaving out too much information in this process.

Therefore, in this paper, we adopt the recently developed method to analyze the change point in a

sequence of distributions.

Dubey & Müller (2020) considers a sequence of independent random objects Yt taking values

in a metric space (Ω, d) rather than in R as in traditional methods (Niu et al. 2016). As in most

practical situations, the differences in distributions are mostly in location or in scale. Therefore, this

method aims to detect differences in means and variances which are in Fréchet type and provides

a generalization of the notion of location and scale to metric spaces.

The test statistic for the change point can be written as:

Tn(b) =
b(1− b)

σ̂2
{(V̂[0,b] − ˆV[b,1])

2 + ( ˆV[0,b]
C − ˆV[0,b] + ˆV[b,1]

C − V̂[b,1])
2},

where b is the possible value of the change point, σ̂ is the asymptotic variance of the empirical

Fréchet variance, ˆV[i,j] is the estimated Fréchet variance and lastly, ˆV[i,j]
C

is the “contaminated”

version of Fréchet variance obtained by plugging in the Fréchet mean from the complementary data

segment.

Based on this test statistic, Dubey & Müller (2020) further provide an inference method for

the identification of change points in a sequence of distributions. There are two ways of calculating

critical values, Monte Carlo simulations or the bootstrap approximation. The latter one is shown

to yield higher critical values and thus is more conservative. We refer to Dubey & Müller (2020)

for more technical details.

D. Time dynamics of tail risk

Tail risk is an important part of the analysis for cyber risk, especially in the sense that extreme

tail risk or heavy-tailedness has many unfavorable properties such as inducing non-diversification

trap(Ibragimov et al. 2009).9

In models considering a heavy-tailed risk, the variable of interest r, cyber loss in our case, is

usually assumed to have a distribution with power tails, such that P (r > x) ∼ C
xζ , C > 0, as

x → +∞. The parameter ζ is the tail index. This index characterizes the heaviness of the tail of

the distribution and the smaller the index, the greater the probability mass in the tail. The tail

index is linked to the existence of the moments. For example, the variance of r is finite if and only

if ζ > 2, and the mean is only finite if and only if ζ > 1.10

Estimation of tail index: we consider two basic non-parametric methods which are widely

used in the literature. The first one is the Hill’s estimator as follows (Hill 1975):

9When risk distributions have heavy left tails and insurance providers have limited liability, insurance providers
may choose not to offer insurance for catastrophic risks and not to participate in reinsurance markets, even though
there is a large enough market capacity.

10The definition of the tail index may differ from other papers, as this value is the inverse of the shape parameter in
generalized Pareto distribution. To make sure both Hill and OLS log-log rank-size estimator report the same value,
we define the tail index in this manner.
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ζ(k) = {1
k

k∑
j=1

ln(x(n− j + 1))− ln(x(n− k))}−1,

where x(i) is the ith-order statistic such that x(i) ≥ x(i− 1) for i = 2, ...n.

The second method is OLS log-log rank-size regression (OLS estimator). We use the revised

version proposed by Gabaix & Ibragimov (2011) which is consistent in small samples:

log(Rank − 1/2) = a− ζlog(Size).

The two methods above are applied to the tail of the distribution for the estimation, but a

key issue remains: the selection of the threshold for the tail. There are many methods to select

the optimal threshold, we consider the R package “tea” from Ossberger (2020), which includes 12

different approaches. We conduct the simulation to find the suitable approaches for our purpose

and 2 methods (“dAMSE” and “hall”) provide better performance compared to other methods

in the package. But there is a downward bias in these two methods and we find using the OLS

estimator significantly reduces the bias (details in Appendix .B.1). Therefore, we use these two

methods in combination with the OLS estimator for the estimation of the tail index.

Change point detection: To further analyze the trend or potential change points in the

extreme value index, we rely on Ibragimov & Müller (2016). The empirical strategy is to partition

the sample into two periods, the period before a possible break point, i, and the period after the

point, j. Then we divide each period into q groups chronologically, and compute the Behrens-Fisher

statistic:

BF =
ξ̂1 − ξ̂2√

(s1)2

q1
+ (s2)2

q2

,

where ξ̂i = q−1
i

∑q1
j=1 ξi,j , (si)

2 = (qi − 1)−1
∑qi

j=1(ξi,j − ξ̂i)
2, and ξi,j is the tail estimator.

We then compare the BF statistic with the critical value of the Student-t distribution with

min(q1, q2) − 1 degrees of freedom. This allows us to detect whether there is a change point for

the time series data. Together with the optimal threshold selection methods, we can identify the

possible change points for the tail index of cyber risk.

V. Empirical results

A. Report delay

To understand the problem of report delay, we first briefly compare our three databases. To

ensure the comparability of different databases, we restrict the time period to start from 2005 and

focus only on the malicious category in the U.S. (the PRC data starts from 2005 and covers only

U.S. data). 11

11There are still some issues affecting the reliability of comparison. First, there is no exact accident date in SAS
data, so certain biases may exist when compared with other databases. For the PRC data, because of the compulsory
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Figure 2. Different datasets of cyber risk

Notes: This figure reports the monthly frequency of malicious cyber events in three main databases. The abnormal
and periodic peaks in the Advisen data are related to the inaccuracy of the accident date. For an event with only a
known accident year, the database assigns the first day of the year as its estimated date.

Various sources and reports (Allianz 2021, Accenture 2021) suggest that cyber risk is increasing

quickly over the years, but as shown in Figure 2, the increasing trend is not as obvious as we

would expect. For example, the data from SAS show a steady trend, while the other two indicate

an increasing trend during the early stage and then a steady trend in recent years. However, the

sudden drop in the number of cases in 2018 for PRC and in 2020 for Advisen indicate that the

problem of report delay may be one of the reasons behind this.

To look into the problem of report delay more deeply, we make use of the date of creation in

Advisen to show how the trend evolves over the years in Figure 3. We plot the evolution of cyber

risk based on four creation dates (every four years from 2009 to 2021) so that only cyber events

before the creation date are included in each graph. This provides a clear comparison of different

points in time and shows that at each point there is a clear decreasing trend which undoubtedly

relates to delayed report.

disclosure of data breaches, the difference between the time when the event was made public and the accident date
should not be large. Second, another point that may affect the comparison is that cyber events in PRC are mostly
about data breaches while the other two include all kinds of cyber risk.
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Notes: This figure reports the monthly frequency of malicious cyber events in Advisen, depending on the time when
the events are included in this database.
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In general, the process of collecting data related to cyber risk can be divided into two stages.

The first stage is from the accident date to the date of the first notice. This period can be short for

some types of events, such as cyber extortion or malfunction of devices, which the victims would

notice almost immediately. But for other types including data breaches, the firms may take as long

as months or years to find out that their data have been compromised. In general, the mean days

of delay is 182 and the median is 33 days in the Advisen data.

The second stage starts with the date of the first notice and ends with the creation date in the

database of concern. The time delay in this stage is mainly related to the efficiency of the database

of concern, in some cases, the staff can update the data immediately but more likely there will

be a moderate amount of delay in this stage, constrained by the investment of this database. In

the Advisen data, the delay in this stage is much more severe than the first stage, with mean and

median delayed days of 836 and 538. The major reason for this delay is that although the Advisen

database begins to collect data in 2007, the majority of their events are created in recent years,

especially during 2016-2018.

A.1. Bias correction for the Advisen data

We first conduct an in-sample analysis (see details in Appendix .C) to compare the performance

of the three methods mentioned in the methodology part, and it is shown that the GDM hazard

method has the best performance. Therefore, we apply the two-stage method with GDM hazard to

the whole sample period. The result is shown in Figure 4. The increasing trend for the malicious,

negligent, and “others” category is clear, although the number of malicious and negligent cases is

increasing much faster compared to the “others” category. The exception is the privacy category.

There is a peak around 2017 and then the number of cases decreases significantly. A more detailed

analysis of the trends and change points will be discussed in the following section. After correcting

the report delay problem, we can find for most of the cases the increasing trend becomes apparent

compared to the raw data, indicating the necessity of our bias correction procedure.

A.2. Bias correction for the SAS data

The main analysis of the report delay problem is based on the Advisen data since it has detailed

information on the time dimension. To validate the results from this database, we further apply

the method above to another dataset-SAS. However, since SAS data only have information on the

yearly level about the date of occurrence, we use this data as a robustness check only. As shown

in Figure 5, only the malicious cyber cases exhibit a clearly increasing pattern, while the negligent

cyber cases are relatively stable. This is different from the results we see in Advisen, and the

possible reason is related to the fact that there are more incidents of unintentional disclosure in

Advisen which are on the rise and affect the overall trend. In addition, we can find the trend

of operational risk is decreasing even after the bias correction, which is in sharp contrast to the

emerging cyber risk.
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Figure 4. Bias correction for the Advisen data

Notes: This figure shows the forecast results of cyber incidents with the 95% confidence interval after adjusting the
report delay problem for different categories in the Advisen data.
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Figure 5. Bias correction for the SAS data

Notes: This figure shows the forecast results of cyber incidents with the 95% confidence interval after adjusting the
report delay problem for different categories in the SAS data.

Overall, the results from SAS suggest the increasing trend we observe in Advisen data is not

unique and data specific. Since the SAS data only include large events with loss amounts higher

than $100,000, this also shows the increasing trend is not solely driven by a large number of incidents

with small losses.

B. Time dynamics of loss frequency

To better understand the dynamics of loss frequency, we apply the narrowest-over-threshold

method to the bias-adjusted time series data of cyber risk in Advisen.

The top left graph in Figure 6 plots the dynamics of cyber incidents of the malicious type

with change points as the grey vertical lines. Four change points are detected, the first one is in

November 2015, and after this point, the increasing rate became higher. At the second change

point in March 2018, the increasing trend was replaced by a downward pattern. Starting in June

2019, the number of cyber incidents began to increase rapidly and the last change point in July

2020 led to an even higher increase rate.

Given the fact that we are working with time series data, serial dependence can be a problem
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of concern as it may induce bias for the estimation of the variance of noise and thus the accuracy

of the change point detection. Therefore, following Baranowski et al. (2019), we add additional IID

Gaussian noise to the original data with a mean of 0. The standard deviation is chosen to be the

standard deviation of the residuals after fitting the original data. The top right graph of Figure 6

plots the result after adjusting serial dependence and we can find the overall pattern is consistent

with the original results.

However, the current results are based on the assumption of a linear pattern, but the fact that

there are multiple phases with increasing slopes in the previous results indicates that the trend of

cyber risk may follow a non-linear pattern. As the method is not designed for non-linear change

points, we transform the original data into the log scale and then present the results of change

points in the bottom left graph. There is a nearly linear increase in cyber risk in the log scale,

which means that cyber risk has undergone exponential growth. The only exception is in the period

between March 2018 and December 2019, when there is a short decreasing phase. To control for

the potential bias from serial dependence, we add additional IID Gaussian noise with zero mean

and the standard deviation of the residuals to the data. As the noise is random, there might

be different results depending on the actual distribution of the Gaussian noise. In our paper, we

consider the most conservative results with the least change points among different possibilities.

This is shown in the bottom right graph of Figure 6. This provides further evidence that the

linear pattern assumption is not likely to hold and that cyber risk of the malicious type is in fact

undergone exponential growth in the past two decades. There might be certain disturbances during

this period such as the period from March 2018 to December 2019 as in the bottom left graph, but

these disturbances do not fundamentally change the overall pattern of malicious cyber incidents.

For other types of cyber risk in Advisen, we present the results in Figure 7 with log transforma-

tion and serial dependence adjustment as above. The top left graph is the result for the malicious

type. The top right graph presents the possible change points for the negligent type. After trying

different kinds of Gaussian noise to the data, the decreasing phase between July 2014 and November

2016 is still present. Therefore, for the negligent type, the exponential growth is not continuous

but subject to certain disruptions.

For the privacy type, the time pattern is significantly different than other categories. The

number of cases began to increase rapidly after April 2015 and peaked around the beginning of

2017. Then there is a significant drop in the number of cases until now. In the data, the incidents

are mainly related to the violation of two acts (Telephone Consumer Protection Act and Fair Debt

Collection Practices Act) by contacting the consumers without permission. The declining trend

after 2017 might be driven by the possibility that more and more firms learn to comply with the acts

after a significant number of lawsuits is filed by the consumers. Furthermore, the European Union

adopted the general data protection regulation (GDPR) in April 2016, which enhances individuals’

control and rights over their personal data. This also might contribute to the decline of cases

related to the violation of privacy in our data.

For the “others” category, there is also a clear exponential growth over time but the growth
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Figure 6. Change points for loss frequency (Malicious)

Notes: This figure reports the results of the change point detection method for malicious cyber incidents in the
Advisen data. The grey vertical lines are the dates of change points and the black dots are the monthly number of
malicious cyber incidents based on the forecast estimation after correcting the report delay problem.
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Figure 7. Change points for loss frequency by type

Notes: This figure reports the results of the change point detection method for different kinds of data after log
transformation and serial dependence adjustment, based on the forecast estimation when correcting the report delay
problem.

rate is much lower than in the case of the malicious and negligent type. Therefore, we will not

focus on this category in the following analysis. The comparison of different types of cyber risk

indicates that the malicious type is the biggest threat as the number of malicious incidents is

growing exponentially and has no sign of slowing down in the observed period.

There are also several other papers looking at the time dynamics of cyber risk, although from

different perspectives with different data sources. Jamilov et al. (2021) collect a complete set of

transcripts from quarterly earnings conference calls of public firms from 85 countries over the 2002-

2020 period and construct a cyber risk exposure measure for each quarter, as shown in the top

right graph in Figure 8. The time pattern of their results is very much similar to our bias-corrected

pattern in the top left graph for the malicious type. Jamilov et al. (2021) also highlights some

notable events related to cyber risk in the figure. In addition, Florakis et al. (2022) builds a cyber

risk exposure measure based on the ”Risk Factor” section of the SEC filings and presents the yearly

average of this measure from 2011 to 2018 (bottom left graph). Although they have less granular

results, the increasing pattern is basically the same as what we show.
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Figure 8. Cross comparison of multiple sources

Notes: This figure compares the time trend of cyber risk frequency from three different sources. The top left graph
is from this paper; the top right graph is from Jamilov et al. (2021), based on the cyber risk measure from quarterly
earnings conference calls of public firms from 85 countries over the 2002-2020 period; the bottom left graph shows
the annual average cyber risk measure based on the ”Risk Factor” section of the SEC from 2011 to 2018 (Florakis
et al. 2022).
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C. Time dynamics of loss severity

C.1. Possible selection bias

Although we address one type of data bias (report delay) in the previous section, there are still

other types of bias that might be present in the data. One kind of bias that is of special concern

when we study the distribution of cyber risk, is selection bias. This is a common issue in many

fields and in our case, it might be that the cyber incidents of certain characteristics are selected for

our sample. For example, Amir et al. (2018) indicates that public firms may choose not to disclose

certain incidents with small losses and withhold information on more severe cases. Therefore, our

sample can be biased in the direction that only the incidents with large losses are included, which

will lead to an overestimation of the damage caused by cyber risk.

To test whether our data have this kind of selection bias, we make use of the introduction of data

breach notification laws across the U.S. These laws require institutions to notify their customers

and other relevant parties in the case of a data breach or unauthorized access to data within a

reasonable amount of time. This also means the information about the incident will be reported

to the authorities at the same time. Therefore, if there is selection bias in our data, we should

observe a significant change in the profile of cyber incidents in the short period before and after

the introduction of the notification law. Furthermore, we restrict our sample to cases involving

personal identity, financial, health, or record information in the U.S. as only these are required to

disclose in a timely manner.

In the U.S., the introduction of data breach notification law is different across states and thus we

collect the information on the effective date of this law for each state (PerkinsCoie 2021). For the

characteristics of cyber risk, we have information on the total financial losses and affected counts

of the incident (as we show above, this information is not frequently populated, especially for the

financial losses). If these two variables are smaller after the law, this indicates that incidents with

large losses are more likely to be included without regulation. In addition, we have information

on the victim firms, such as the number of employees and total revenues. If these two variables

are higher before the implementation of the notification law, this provides support that there is

selection bias and large firms are likely to be included without regulation.

We utilize three methods to detect possible changes before and after the notification law. The

first one is the Kolmogorov–Smirnov test, which is a commonly used method for the equality of

continuous and one-dimensional distributions. The second one is the Student’s t-test, which is also

a standard tool to compare two samples. We conduct the tests with equal variance and unequal

variance assumptions. The last one is from Ibragimov & Müller (2016), the one introduced in

Section IV.D. This method is specially adjusted for the small sample problem, which is relevant

for variables such as financial losses in our data. We choose a half-year period before and after the

introduction of the law for each state (the states with at least 10 incidents for each period).12

Figure 9 plots the distribution of p values of the tests for different states. The grey horizontal

12We also extend the period to one year before and after the law, and the result is consistent with the main result.
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Figure 9. Distribution of p-value for different variables

Notes: This figure reports the distribution of p values of three tests (Kolmogorov–Smirnov test, Student’s t-test
with equal variance and unequal variance, and small sample adjusted t-test from Ibragimov & Müller (2016).
In the figure, we only distinguish the p values for different variables and different states, but not for different
tests. The abbreviation of states used in this figure is standard two-letter abbreviations in the U.S, see also
https://www.ssa.gov/international/coc-docs/states.html. )

lines represent the 5% and 10% significance levels. The results for different variables and different

states are not significant in most of the tests. Although there are certain exceptions, there is no

clear pattern among them and the evidence is more consistent with the argument that there is

no significant selection bias in our data. Despite the fact that the test is simple and only applies

to incidents involving personal data in the U.S., this is still valuable as it reduces the concern of

selection bias to a certain extent.

C.2. Change point detection

Figure 10 shows the dynamics of financial loss distributions (log-transformed) for malicious and

negligent cases in Advisen and SAS. There are gaps among distributions in the top right graph as

there are not enough data points for the density plot. We can find a common pattern in these two

databases: the distribution for the malicious cases is shifting to the right, while the distribution for

the negligent cases is shifting to the left. In Figure 11, the distribution of the number of records

over the years is presented. The malicious cases appear to lead to more losses compared to the

negligent cases, and the right tail of malicious cases is fatter than the tail of negligent cases. Still,
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Figure 10. Dynamics of distributions

Notes: This figure presents the dynamics of distributions for financial loss (log scale) in Advisen and SAS. The left
panel shows the results for malicious cases, and the right panel shows the results for negligent cases. There are several
years with no plotted distribution due to limited data points.

this is only descriptive evidence and we will use the method from Dubey & Müller (2020) to detect

change points across distributions.

When we apply the method to the distributions of cyber risk, the significance level of the

change point differs when using two ways of calculating the critical value, as discussed in Section

IV.C. In fact, the change points detected in most of our cases are only significant when using the

asymptotic p-value but not the bootstrap p-value. As the bootstrap p-value is more conservative

and indicates larger differences compared to the asymptotic p-value, the change points we discuss

later are only present under weaker conditions. In our application, the change point frequently

occurs at the beginning or the end of the period. To make sure there is no additional change point

for the rest of the period, we apply the method for a second time. As our sample has at most

a size of 20 distributions, it is sufficient to apply the method twice because the sample size will

decrease significantly and the validity of the change point no longer holds. Therefore, this is a

small extension from Dubey & Müller (2020) and it is not especially necessary to provide further

analysis of the validity of the method.

Figure 12 compares the average distribution of financial loss before and after the change point.
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Figure 11. Dynamics of distributions

Notes: This figure presents the dynamics of distributions for the loss of personal records (log scale) in Advisen and
PRC. The left panel shows the results for malicious cases, and the right panel shows the results for negligent cases.
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The left panel shows the distributions for malicious cyber risk but the results are mixed. In Advisen,

we find the distribution first shifts to the left after 2003 and moves to the right after 2018. This

indicates the financial losses from malicious cases are getting more severe in the recent period.

However, the results from SAS show there is a shift to the left after 2003 but no change point

is detected afterward. Therefore, there is no strong evidence indicating the loss distribution of

malicious cyber risk is changing in a worrisome direction. In contrast, the loss distribution for

negligent cases in the right panel shows a consistent pattern that the distribution is shifting to

the left after 2018. In general, the results in Figure 12 show the financial loss distribution from

malicious cases has not changed significantly after 2003 but the distribution for negligent cases has

undergone a shift in the direction of lower severity.

Figure 13 presents the results for the distributions of the number of records or affected counts.

The general impression is that for both malicious and negligent cases the distributions before and

after the change point are not as different as the case of financial loss distributions. Still, for the

malicious case, we can find that the distribution is shifting to the left during the first decade of this

century. The possible reason is that with the development of IT and related technology, all firms,

not only the large ones, are exposed to cyber risk. Therefore, the losses come from both the large

and small firms, but the small firms usually have less number of records or consumer information.

Therefore, the overall loss profile shifts to the left in the second decade. More generally, we can

identify a fatter right tail in the recent period for both malicious and negligent cases, which might

indicate more and more extremely damaging cases are happening in the recent period. To further

understand the tail risk from malicious and negligent cyber incidents, we will provide a more

detailed analysis in the following section.

D. Time dynamics of tail risk

D.1. Basics of tail index

We first provide a detailed comparison of the tail index in Table II using two methods (“dAMSE”

and “hall”) mentioned in Section IV.D with two tail estimators (Hill’s and OLS estimator). Al-

though these two methods are chosen using small sample simulations, they also provide good

performance for a large sample. Consistent with the simulation results, the tail estimation with the

OLS estimator provides higher values, as a result of correcting the downward bias. Therefore, we

focus on the estimation results with the OLS estimator afterward. For most of the cases, the results

using two threshold selection methods (“dAMSE” and “hall”) are reasonably close, but there is a

significant difference for the tail index with the Advisen data with respect to the affected counts.

This is driven by a large discrepancy between the optimal thresholds selected by these two methods.

“hall” chooses a higher threshold for the malicious case compared to “dAMSE”, but an extremely

lower threshold for the negligent case compared to “dAMSE”. To address this issue, we consider

the next two best methods in the pool of threshold selection methods, “eye” and “mindist”. For

the malicious case, the tail index is 0.84 and 1.29, respectively. Therefore, the estimation from

“hall” is more consistent with the rest. For the negligent case, the tail index is 0.62 and 0.88 using
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Figure 12. Change points of distributions (loss amount)

Notes: This figure presents the comparison of distributions (log scale) for financial loss in Advisen and SAS. The left
panel shows the results for malicious cases, and the right panel shows the results for negligent cases.
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Notes: This figure presents the comparison of distributions for the loss of personal records (log scale) in Advisen and
PRC. The left panel shows the results for malicious cases, and the right panel shows the results for negligent cases
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“eye” and “mindist”. Hence, the result from “dAMSE” is more reliable. In the following analysis,

we will mainly focus on the results from “hall” with the OLS estimator (except the negligent case

in Advisen (affected counts) where “dAMSE” with the OLS estimator is used).

The estimation in Table II shows that different kinds of cyber risk all yield severe heavy-

tailedness, with a tail index lower than 1 for most of the cases. This is a serious concern as there is

no finite mean for cyber loss distributions. Furthermore, the monetary losses have a less heavy tail

compared to the non-monetary losses such as the number of records breached. This is reasonable in

the sense that the capacity for data storage of any device is increasing rapidly in recent periods and

thus the exposure to cyber risk. Therefore, the probability of extreme observations is increasing

and this can lead to higher tail risk.

D.2. Change point detection

As the tail of cyber risk exhibits extreme heavy-tailedness, it is of special interest to understand

whether this is a stable or dynamic feature. Figure 14 plots the rolling window estimation of the

tail index for financial loss of cyber risk and shows the most probable change point in the time

period. For malicious cases in Advisen and SAS, the tail index becomes slightly higher and more

volatile after the change point, which means that the tail for cyber financial losses is getting less

heavy. But for the negligent cases, the general trend is relatively stable with a tendency to decline.

Figure 15 presents the results for the cyber loss as measured by the number of records or

accounts affected. For the malicious cases, there is mixed evidence as the trend from Advisen and

PRC is different, but the tail index remains below 1 over time. For the negligent cases, there is a

clear and consistent declining trend after 2016. This leads to an even heavier tail for negligent cyber

risk. In fact, there are more extreme cyber events caused by negligence rather than by malicious

third parties in our data. The reason is likely to be that the negligent behaviors are unexpected and

arise from the internal process that affects a wide range of data in the system, while the malicious

attacks typically have a pre-defined target and focus on a specific set of data rather than all the

data in a firm. Although there is no strong academic evidence, this is consistent with various

anecdotal evidence such as Shred-it (2018) and CybelAngel (2020).

Overall, the heaviness of the tail for malicious cases is relatively stable with a tendency to

decline, while the heaviness of the tail for negligent cases is increasing, especially when the loss is

measured by the number of records or accounts affected.

VI. Implications for cyber risk management

A. Optimal risk management with delayed information

One distinct feature of cyber risk is its dynamic nature, and this imposes a serious challenge

for the management of cyber risk. We document exponential growth for malicious cyber risk

after adjusting report delay. This is significantly different from the trend shown in the raw data.

Therefore, depending on the ability to collect and analyze data, it can be very different with respect
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Table II Comparison of tail index

Hill’s estimator OLS estimator

Sample Number
after trun-
cation

Tail index 95% CI (lower) 95% CI (higher) Tail index 95% CI (lower) 95% CI (higher)

Advisen (loss amount)–Malicious
hall 87 0.84 0.67 1.02 0.90 0.63 1.17
dAMSE 156 0.76 0.64 0.88 0.85 0.66 1.04

Advisen (loss amount)–Negligent
hall 34 0.55 0.37 0.74 0.64 0.33 0.94
dAMSE 61 0.45 0.33 0.56 0.54 0.35 0.73

SAS (loss amount)–Malicious
hall 67 0.86 0.66 1.07 0.97 0.64 1.29
dAMSE 136 0.70 0.58 0.82 0.84 0.64 1.04

SAS (loss amount)–Negligent
hall 43 1.12 0.79 1.46 1.15 0.66 1.64
dAMSE 27 1.06 0.66 1.46 1.18 0.55 1.80

SAS Operational risk (loss amount)–Malicious
hall 127 0.98 0.81 1.15 1.05 0.79 1.30
dAMSE 192 0.89 0.77 1.02 1.00 0.80 1.20

SAS Operational risk (loss amount)–Negligent
hall 353 1.13 1.01 1.25 1.11 0.95 1.28
dAMSE 1179 0.85 0.80 0.90 0.98 0.90 1.05

Advisen (affected counts)–Malicious
hall 332 0.64 0.57 0.71 0.82 0.70 0.95
dAMSE 687 0.52 0.48 0.56 0.64 0.57 0.71

Advisen (affected counts)–Negligent
hall 2055 0.39 0.37 0.40 0.38 0.36 0.41
dAMSE 27 0.68 0.42 0.93 0.74 0.35 1.14

PRC (number of records)–Malicious
hall 572 0.43 0.39 0.46 0.43 0.38 0.48
dAMSE 166 0.43 0.36 0.49 0.48 0.38 0.59

PRC (number of records)–Negligent
hall 1218 0.50 0.47 0.53 0.50 0.46 0.54
dAMSE 172 0.48 0.41 0.56 0.44 0.35 0.53

Note:
The truncation is made for the right tail based on the threshold selected by “hall” and “dAMSE”. The number after
truncation indicates the sample size of observations used for the estimation of the tail index.

32



0

1

2

3

4

0

1

2

3

4

2005 2010 2015 2020
Date

Ta
il 

in
de

x 
(h

al
l) C

ritical value

Rolling window−loss amount (Advisen−malicious)

0

1

2

3

4

0

1

2

3

4

2010 2015 2020
Date

Ta
il 

in
de

x 
(h

al
l) C

ritical value

Rolling window−loss amount (Advisen−negligent)

0

1

2

3

4

0

1

2

3

4

2005 2010 2015 2020
Date

Ta
il 

in
de

x 
(h

al
l) C

ritical value

Rolling window−loss amount (SAS−malicious)

0

1

2

3

4

0

1

2

3

4

2005 2010 2015 2020
Date

Ta
il 

in
de

x 
(h

al
l) C

ritical value

Rolling window−loss amount (SAS−negligent)

Figure 14. Change points for tail index (loss amount)

Notes: This figure presents the possible change point together with the rolling window estimation of the tail index
for financial loss data in Advisen and SAS. The black area in each graph is the estimated tail index with a two-year
rolling window and the “hall” method for threshold selection. The red dots are the BF values from Ibragimov &
Müller (2016). The blue line is the point with the highest BF value, which indicates the most possible change point
in the whole period.
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Figure 15. Change points for tail index (number of records)

Notes: This figure presents the possible change point together with the rolling window estimation of the tail index
for the number of records affected in Advisen and PRC. The black area in each graph is the estimated tail index with
a two-year rolling window and the “hall” method for threshold selection (except for the negligent cases in Advisen,
where we rely on the “Advisen” method). The red dots are the BF values from Ibragimov & Müller (2016). The blue
line is the point with the highest BF value, which indicates the most possible change point in the whole period.
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to the perception and estimation of cyber risk of different parties. In a simple setting of a firm and

an insurer, the insurer is more likely to have an information advantage since it specializes in the

area of risk management, and dealing with report delay is a standard task as it needs to calculate

the claim reserves constantly. The decision-makers in firms may have more information about their

own vulnerability related to cyber risk, but may not be experts in analyzing the dynamics of cyber

risk. Therefore, there is an information gap between the firm and the insurer, which leads to a

difference in the estimation of cyber risk probability. To understand how this difference may affect

the optimal decision of cyber risk management, we adopt the widely used framework from Ehrlich

& Becker (1972) and discuss the implications in this section.

We consider the situation where the firm has delayed information about the level of cyber risk

and thus has a downward biased belief about its risk probability. Consider the firm with initial

wealth w0 subject to a loss of L (0 < L < w0). The probability of loss L is believed to be p0 < 1,

while the true probability is p1 > p0. The firm has a standard utility function u (u′ > 0 and u′′ < 0).

The concavity of the function comes from the imperfect capital market and tax reasons (Greenwald

& Stiglitz 1990; Doherty & Smetters 2005). The options for cyber risk management for the firm

include market insurance and self-protection. The price of insurance π(p) = p is actuarially fair

and thus the premium with the coverage level α is απ(p)L. The firm could reduce the probability

of cyber risk by self-protection measures such as improving the defense system with a cost x > 0.

The relationship between the risk probability and the self-protection cost is a convex function, with

p′(x) < 0, p′′(x) < 0 and limx→∞ p(x) = 0.

In case of delayed information, the firm will maximize its expected utility based on the bi-

ased probability, facing the actuarially fair insurance premium from the insurer. Therefore, the

maximization problem is

EU = (1 − p(p0, x))u(w0 − x − απ(p(p1, x))L) + p(p0, x)u(w0 − x − L + αL − απ(p(p1, x))L),

(1)

where p(p0, x) < p(p1, x).

The first-order condition for a maximum with respect to the coverage α is

∂EU

∂α
= (1− p(p0, x))u

′
1(·)(−π(p(p1, x))L) + p(p0, x)u

′
2(·)(1− π(p(p1, x)))L = 0, (2)

where u′1(·) = u′(w0 − x− απ(p(p1, x))L) and u
′
2(·) = u′(w0 − x− L+ αL− απ(p(p1, x))L).

After rearranging the equation, we have

u′1(·)
u′2(·)

=
p(p0, x)

1− p(p0, x)
· 1− p(p1, x)

p(p1, x)
. (3)

In the standard situation where p(p0, x) = p(p1, x), the right-hand side equals 1 and α should

satisfy u′1(·) = u′2(·). This means α = 1, as shown by Mossin (1968). In our case, as p(p0, x) <

p(p1, x), the right-hand side is smaller than 1, α should be such that u′1(·) < u′2(·). Since u′ > 0
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and u′′ < 0, α has to be smaller than 1. Therefore, the firm would purchase less insurance with the

presence of delayed information.

Next, the first-order condition (FOC) with respect to the self-protection x is

∂EU

∂x
= −p′(p0, x)u1(·) + (1− p(p0, x))u

′
1(·)(−1− αp′(p1, x)L)

+ p′(p0, x)u2(·) + p(p0, x)u
′
2(−1− αp′(p1, x)L) = 0, (4)

where u′1(·) = u′(w0 − x− απ(p(p1, x))L) and u
′
2(·) = u′(w0 − x− L+ αL− απ(p(p1, x))L).

By arranging the equation, we have

1 + αp′(p1, x)L

u1 − u2
=

−p′(p0, x)
(1− p(p0, x))u′1(·) + p(p0, x)u′2

. (5)

Again, consider the standard situation without delayed information, the equilibrium condition

will be 1+αp′(p1,x)L
u1−u2

= −p′(p1,x)
(1−p(p1,x))u′

1(·)+p(p1,x)u′
2
. Compared to equation 5, the left-hand side will

be equal for both situations with a fixed x. However, the right-hand side in equation 5 would be

smaller because −p′(p0, x) < −p′(p1, x) due to the convexity of the function and (1−p(p0, x))u′1(·)+
p(p0, x)u

′
2 > (1− p(p1, x))u

′
1(·)+ p(p1, x)u

′
2. To ensure the equality of FOC, x needs to be reduced.

Therefore, optimal self-protection will be lower in the case of delayed information.

Combining the results from optimal coverage and self-protection, we find that if the firm has

a downward biased belief about its cyber risk, this will lead to underinvestment in cyber risk

management, including lower insurance and lower self-protection (thus higher risk).

B. Optimal risk management with delayed information and tail risk

In addition to the problem of delayed information, we also provide evidence for the extreme

heavy-tailedness of cyber risk. As mentioned earlier, Ibragimov et al. (2009) has shown this feature

might induce the non-diversification trap, resulting in no market for cyber risk in the special

situation. In practice, the insurance market exists and has been increasing rapidly, but insurers

mostly offer contracts with coverages lower than $1 million and avoid providing high coverage which

might severely undermine the financial stability of the company in extreme scenarios. Although

this strategy can be useful for protecting the insurers from extreme tail risk arising from cyber

insurance lines, this level of coverage is not enough to protect businesses with increasingly high

exposure to cyber incidents, and thus limits the value of insurance in the management of cyber risk

in the whole society.

Building on this evidence, we introduce tail risk to our model by considering a small probability

ϵp of bankruptcy for the firm. The maximum insurance coverage is still L since the insurer does

not insure the tail risk due to the non-diversification trap. Therefore, in this bankruptcy case, the

remaining value of the firm will be zero even with full insurance. Hence, the maximization problem
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of the firm is

EU = (1− p(p0, x))u(w0 − x− απ(p(p1, x))L)

+ (1− ϵ)p(p0, x)u(w0 − x− L+ αL− απ(p(p1, x))L) + ϵpu(0), (6)

where ϵpu(0) = 0 and π(p(p1, x)) = p(p1, x).

Therefore, FOC with respect to the optimal coverage α is

∂EU

∂α
= (1 − p(p0, x))u

′
1(·)(−π(p(p1, x))L) + (1 − ϵ)p(p0, x)u

′
2(·)(1 − π(p(p1, x)))L = 0, (7)

where u′1(·) = u′(w0 − x− απ(p(p1, x))L) and u
′
2(·) = u′(w0 − x− L+ αL− απ(p(p1, x))L).

Rearranging the equation, we have

u′1(·)
u′2(·)

=
(1− ϵ)p(p0, x)

1− p(p0, x)
· 1− p(p1, x)

p(p1, x)
. (8)

Compared to equation 3, the right-hand side is smaller as (1− ϵ)p(p0, x) < p(p0, x). This means

that with the presence of tail risk, the optimal insurance coverage will be even lower. The reason

is that the value of insurance is reduced as the reimbursement in the extreme scenario would not

benefit the firm.

For optimal self-protection, FOC is shown as

∂EU

∂x
= −p′(p0, x)u1(·) + (1− p(p0, x))u

′
1(·)(−1− αp′(p1, x)L)

+ (1− ϵ)p′(p0, x)u2(·) + (1− ϵ)p(p0, x)u
′
2(−1− αp′(p1, x)L) = 0, (9)

where u′1(·) = u′(w0 − x− απ(p(p1, x))L) and u
′
2(·) = u′(w0 − x− L+ αL− απ(p(p1, x))L).

Simplifying the equation yields

1 + αp′(p1, x)L

u1 − (1− ϵ)u2
=

−p′(p0, x)
(1− p(p0, x))u′1(·) + (1− ϵ)p(p0, x)u′2

. (10)

Compared to equation 5, the right-hand side is larger because (1 − ϵ)p(p0, x) < p(p0, x) and

the left-hand side is smaller because u1 − (1− ϵ)u2 > u1 − u2. Therefore, the optimal x should be

adjusted upward to ensure the equality of FOC. This result is obtained due to the different effects

of delayed information and tail risk as delayed information would induce lower self-protection while

tail risk will lead to a higher protection level. However, whether the optimal x is higher than the

standard situation without delayed information and tail risk is unclear and depends on the severity

of delayed information and the exposure of tail risk.

Overall, this basic model illustrates how the empirical properties of cyber risk influence the

demand for cyber insurance and the optimal investment in self-protection. In particular, we show

how delayed information and tail risk reduce the demand for insurance, which is consistent with
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the evidence from Cellerini et al. (2022) that more than 90% of the cyber loss is not covered by

insurance. Previous work such as Böhme et al. (2010) has discussed some of the special properties of

cyber risk, we provide further empirical evidence on this and connect these features to the standard

insurance economics model for understanding their impacts on risk management.

This also has implications for policy. As delayed information is a serious problem for cyber risk,

it is possible to address this issue by establishing a public center that serves to provide up-to-date

information about cyber risk to the public. For the issue of limited insurance supply due to tail

risk, the government can step in and provide support for insurers as the lender of last resort. This

would partially alleviate the insurer’s concern about tail risk and improve the market capacity for

underwriting cyber risk.

VII. Conclusion

To better understand the dynamic nature of cyber risk, this paper exploits three main databases

and studies the fundamental empirical properties of this increasingly important type of risk. We

first deal with the problem of report delay that is inherent to the datasets used in empirical research.

Then we analyze the frequency and severity of cyber risk using state-of-art statistical methods for

the detection of structural changes. We show that the threat of cyber risk comes more from the

fact that the frequency is increasing rapidly rather than each cyber incident getting more severe

as malicious cyber risk is growing exponentially in the past two decades but there is no significant

change for the loss distribution. Moreover, we explore the dynamics of tail risk and find that the

heavy-tailedness of cyber risk is persistent over time. Based on these results, we incorporate two

empirical features (delayed information and tail risk) into basic insurance economics and show that

they lead to significantly lower insurance demand.

Our research also highlights various challenges for analyzing and managing cyber risk in the

future. First, we show that the cyber risk landscape is constantly evolving, with new threats

emerging all the time. It is of paramount importance to diligently monitor these changes to ensure

updated and timely responses. Second, researchers face the obstacle of limited data availability

for cyber risk, related to the bias problems encountered in our study. This scarcity arises partly

due to organizations’ reluctance to disclose information about cyber attacks and breaches, and

partly due to the challenging detection and quantification of cyber attacks. Third, cyber risk is a

complex and multifaceted problem that involves technical, organizational, and human factors. This

complexity makes it challenging for researchers to develop comprehensive and effective solutions

and thus interdisciplinary work is needed (Falco et al. 2019). However, such collaborations are

often limited due to disciplinary boundaries and institutional structures. Fourth, there is a lack

of standardization in the way that cyber risk is measured and assessed. This makes it difficult to

compare research findings and develop a common understanding of the problem. Addressing these

challenges will require greater collaboration among researchers, practitioners, and policymakers, as

well as increased investment in research and development.
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Appendix A. Literature review

Table A.1 summarizes the empirical work on cyber risk, especially the ones from a statistical

or actuarial perspective.
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Appendix B. Multiple change point detection for tail risk

Appendix B.1. Comparison of optimal threshold selection methods

As the first step of detecting change points for tail risk, the reliable estimation of tail risk

is crucial. One key issue about tail risk estimation is the choice of threshold. Therefore, we

consider the R package “tea” from Ossberger (2020), which contains 12 different ways of selecting

the optimal threshold for the estimation of tail risk. There are four methods that are not used in

our simulation as they are either not designed for small sample estimation or the running time is

significantly longer than other methods due to the coding structure.

To find out which ones to use, we have done the simulation to compare the 8 methods from the

package. The basic idea of the simulation is to first generate a heavy-tailed distribution similar to

the real data of cyber risk. We use two common distributions, the generalized Pareto distribution

(GPD) and the Fréchet distribution. As the original cyber data show extreme heavy-tailedness, we

use 0.5, 1, and 1.5 as the tail index, and run 10,000 simulations for each case. In addition, we face

the problem of small samples when estimating the rolling window tail index, therefore the sample

size (N) of each simulation is set to be 100 and 500 to reflect the special characteristic of our data.

We report the mean bias between the estimated and actual index and its variance.

Table B.1 reports the results when the sample size equals 100, and Table B.2 reports the results

when N = 500. In both cases, two methods provide better results: “dAMSE” from Caeiro & Gomes

(2015) and “hall” from Hall (1990). The first method is based on the concept of minimizing the

AMSE (average mean squared error) criterion with respect to k (the optimal number of upper-order

statistics). The second one uses the bootstrap procedure to simulate the AMSE criterion of the

Hill estimator. The unknown theoretical parameter of the inverse tail index gamma is replaced by

a consistent estimation using a tuning parameter for the Hill estimator. Minimizing this statistic

gives a consistent estimator of the sample fraction k/n with k.

However, these two methods have a systemic downward bias, as shown in Table B.1 and B.2.

In other words, these two methods tend to estimate lower tail indices compared to the actual

value, especially when the true value is high (see the case when the tail index is 1.5). This is

partly related to the small sample issue in our data. As all the methods in the package use Hill’s

estimator for the estimation of the tail index which is not suitable for the small sample, we consider

changing the estimation method to the OLS estimator from Gabaix & Ibragimov (2011) that is

specially adjusted for small sample bias. Table B.3 presents the comparison of simulation results

for “dAMSE” and “hall” based on both Hill’s estimator and the OLS estimator. It can be seen

that there is a significant improvement when using the second method, especially when the sample

is generated by the Fréchet distribution.
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Table B.1 Comparison of optimal threshold selection methods (N=100)

Tail index Value dAMSE eye GH hall Himp HW PS mindist

GPD
1.5 Mean bias -0.3165 0.0817 0.0559 -0.2798 0.9716 -0.3833 -0.5355 0.0261

Variance 0.0771 0.9135 2.2626 0.0844 517.4994 0.3413 0.0748 0.2554

1 Mean bias -0.1018 0.1443 0.1526 -0.0723 0.2365 -0.0445 -0.2451 0.1493

Variance 0.0433 0.5027 3.2748 0.0480 11.9436 0.3962 0.0327 0.1652

0.5 Mean bias 0.0012 0.1211 0.1063 0.0119 0.0719 0.2083 -0.0497 0.1521

Variance 0.0109 0.1819 0.4037 0.0141 1.8916 4.2911 0.0074 0.0677

Fréchet
1.5 Mean bias -0.0774 0.2341 0.2808 -0.0327 0.2207 0.0049 -0.2337 0.2186

Variance 0.0928 1.2333 6.1720 0.1187 32.4339 12.6251 0.0530 0.3447

1 Mean bias -0.0477 0.1691 0.2045 -0.0192 0.4161 0.1761 -0.1614 0.1821

Variance 0.0412 0.5501 5.3721 0.0529 231.9303 10.2856 0.0238 0.1814

0.5 Mean bias -0.0255 0.1277 0.1029 -0.0110 0.6179 0.4850 -0.0865 0.1436

Variance 0.0102 0.1951 0.6882 0.0134 1406.7142 66.6224 0.0060 0.0687

Note:
The table reports the comparison of 8 methods for optimal threshold selection. The sample size is 100 for each
simulation. Two distributions (GPD, Fréchet) and three tail indices are used.

Table B.2 Comparison of optimal threshold selection methods (N=500)

Tail index Value dAMSE eye GH hall Himp HW PS mindist

GPD
1.5 Mean bias -0.2033 0.0103 0.2035 -0.1708 -0.1339 -0.2310 -0.4608 -0.0632

Variance 0.0300 0.2537 2.5362 0.0420 4.8221 0.1361 0.0264 0.0483

1 Mean bias -0.0605 0.0715 0.1926 -0.0392 -0.0341 -0.0293 -0.1997 0.0531

Variance 0.0163 0.1512 1.6429 0.0219 1.4480 0.0315 0.0108 0.0402

0.5 Mean bias -0.0054 0.0642 0.1181 0.0042 -0.0043 0.1551 -0.0415 0.0927

Variance 0.0029 0.0517 0.6448 0.0052 0.0038 28.7445 0.0017 0.0243

Fréchet
1.5 Mean bias -0.0699 0.0899 0.3548 -0.0228 -0.0560 -0.0273 -0.1978 0.0737

Variance 0.0261 0.3050 4.9652 0.0502 0.1587 0.3037 0.0156 0.0610

1 Mean bias -0.0494 0.0773 0.2277 -0.0164 -0.0408 0.0780 -0.1399 0.0669

Variance 0.0116 0.1526 2.5970 0.0223 0.1063 6.2950 0.0068 0.0410

0.5 Mean bias -0.0240 0.0640 0.1019 -0.0080 -0.0204 0.1549 -0.0769 0.0923

Variance 0.0029 0.0509 0.3327 0.0055 0.0042 5.1581 0.0017 0.0251

Note:
The table reports the comparison of 8 methods for optimal threshold selection. The sample size is 500 for
each simulation. Two distributions (GPD, Fréchet) and three tail indices are used.
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Appendix C. Report delay: In-sample analysis

As shown in Figure 3, the data of Advisen contain multiple abnormal peaks due to inaccurate

information. Therefore, to understand the true trend of cyber risk, it is necessary to deal with

such abnormal data points. Traditionally, the literature tackles this issue by estimating the overall

trend and replacing the abnormal points with estimated results (Wang et al. 2021). However, for

our data, the problem is more related to the misallocation of cyber cases, which means that we

cannot simply replace the extreme number with a lower and smoother one. To repair this anomaly,

we assume the date of cyber events without accurate time follows a normal distribution and then

replace the original date with a more accurate one. Based on this method, we can smooth the time

trend of cyber risk in our dataset. In the following analysis, we will present results with both the

original and adjusted data.

For the modeling of delay structure, we have three models available: GLM, GDM hazard, and

GDM survivor. Therefore, it is useful to first test whether these models perform well for the in-

sample forecast. Since Advisen began to collect data on cyber risk in 2007, we need to exclude

all cases that occurred before 2007 to avoid inherent bias in the database. Therefore, we have

163 months from October 2007 to April 2021, and naturally, the longest possible delay period for

training is 163 months. But in this case, we would have no data for in-sample forecast, hence it is

necessary to select a period when we assume all cyber cases are counted.

As an example, we compare the cumulative proportion of cases reported for different maximum

delay periods in Figure C.1 (the delay between the accident date and the first notice date). Although

there is an increasing trend in each graph due to more missing values in recent times, we can still

find the differences across different maximum delay periods. There is a trade-off between sample

size and accuracy for the selection of the maximum delay period. For our case, we choose the period

of 60 months since it includes at least 75% of all observable cases and also provides a sample of 104

months for in-sample analysis.

Given the maximum delay period of 60 months and the available sample of 104 months, we

choose the 92nd month (so that we can forecast the following year) as the hypothetical present

time, which means we only have observations up to this date. Then we censor the data accordingly,

apply the models to this incomplete sample and compare their results with the actual number.

Figure C.2 shows the results of the median estimated number for original and adjusted data,

with 95% posterior predictive interval. Among the three models, GDM hazard has the most

accurate confidence interval while GLM performs worst. Figure C.3 provides the sample estimates

of Cov[zt,d, z
′
t,d] by density plots of mean bias and the logarithm of the mean squared error between

replicated and observed covariances. This further confirms that GDM hazard is the least biased

and GDM survivor comes second for both samples. Therefore, for the out-of-sample analysis, we

will focus on the GDM hazard framework.
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Figure C.1. Cumulative proportion reported

Notes: This figure plots the cumulative report percentage with different delay periods of 12 to 72 months. For each
graph, every dot represents the percentage of cases reported in the delayed period out of the whole cases in the
data for a specific month of the accident. Therefore, the increasing trend within each graph indicates the issue of
report delay for recent periods. But the pattern across graphs shows how a longer period increases the percentage of
reported cases.

54



0

1000

2000

0 25 50 75 100

Month

P
re

di
ct

ed
 C

as
es

GDM Hazard

GDM Survivor

GLM

Observed Value

Cyber Forecast Comparison

0

500

1000

1500

0 25 50 75 100

Month

P
re

di
ct

ed
 C

as
es

GDM Hazard

GDM Survivor

GLM

Observed Value

Cyber Forecast Comparison

Figure C.2. In-sample cyber forecast comparison

Notes: This figure presents the forecast results of three methods: GDM Hazard, GDM Survivor, and GLM. The
adjusted data are the original data after smoothing the abnormal peaks due to unknown dates.
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Figure C.3. Covariance of Z

Notes: This figure compares the sample estimates of Cov[zt,d, z
′
t,d] from three methods by density plots of mean bias

and the logarithm of the mean squared error between replicated and observed covariances.

55



Appendix D. Time dynamics of cyber frequency: Comparison of methods

In this appendix, we compare the results of the method from Baranowski et al. (2019) with

other alternatives to show the robustness and advantage of the method we choose. As the increasing

pattern is clear in our data, some methods that deal with constant mean are not suitable. Therefore,

we consider two alternatives that we can find in the literature. The first one is the methodology

proposed by Bai & Perron (2003), which was implemented in R by Zeileis et al. (2022) (denoted

as B&P). The change points are estimated by minimizing the residual sum of squares using the

dynamic programming approach. The second approach is from Kim et al. (2009), implemented in

R by Arnold et al. (2020) (denoted as TF). This method is not designed for the detection of change

points but rather for the performance of trend filtering. Still, the results are comparable when we

consider piecewise linear signals.

Figure D.1 shows the results of these methods, where TF1 and TF2 are based on different

thresholds for change points. The main method and B&P detect similar breakpoints, but the TF

method identifies more change points. This is also consistent with the simulation results from

Baranowski et al. (2019), that B&P provide similar results while the TF approach is more sensitive

and detects more change points.13 Overall, all the results are consistent with respect to the location

of change points but different for the number of change points. This provides further validation for

the method we use in the main analysis and the conclusions we draw from the results.

13In addition, the main method is much faster than other approaches, more details can be found in Baranowski
et al. (2019).
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Figure D.1. Comparison of methods for change points of frequency

Notes: This figure compares the results of different change point detection methods for cyber risk frequency after
bias correction.
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Appendix E. Categorization of cyber risk for three databases

Appendix E.1. Risk type in Advisen

In the Advisen database, there is already a more granular level of categorization and we can

rely on this information for our purpose. More specifically, the malicious category includes the

risk types such as “Data - Malicious Breach”, “Phishing, Spoofing, Social Engineering”, “Skim-

ming, Physical Tampering”, “Cyber Extortion”, and “Identity - Fraudulent Use/Account Access”;

the negligent category includes “Data - Unintentional Disclosure”; the privacy category includes

“Privacy - Unauthorized Contact or Disclosure” and “Privacy - Unauthorized Data Collection”.

In addition, there are several types that are not easily distinguishable such as “Industrial Controls

& Operations”, “Network/Website Disruption”, “IT - Configuration/Implementation Errors”, and

“IT - Processing Errors”. These types either belong to the malicious or negligent category, depend-

ing on whether there is any malicious party involved. To differentiate these two types, we consider

a list of keywords and use this to locate the malicious cases. 14 Finally, the incidents that do not

belong to the above categories are classified as “others”.

Appendix E.2. Risk type in PRC

In the PRC data, we rely on the variable “type of breach”. The type of breach of each incident

is indicated with a four-letter abbreviation. In this subsection, we first provide the definition of

each four-letter abbreviation:

- CARD: Fraud involving debit and credit cards not via hacking (skimming devices at point-of-

service terminals, etc.)

- Hack: Hacked by an outside party or infected by malware

- INSD: Insider (employee, contractor, or customer)

- PHYS: Physical (paper documents that are lost, discarded, or stolen)

- PORT: Portable device (lost, discarded, or stolen laptop, PDA, smartphone, memory stick,

CDs, hard drive, data tape, etc.)

- STAT: Stationary computer loss (lost, inappropriately accessed, discarded, or stolen computer

or server not designed for mobility)

- DISC: Unintended disclosure not involving hacking, intentional breach, or physical loss (sen-

sitive information posted publicly, mishandled or sent to the wrong party via publishing online,

sending in an email, sending in a mailing or sending via fax)

- UNKN: Unknown (not enough information about the breach to know how exactly the infor-

mation was exposed)

Based on this categorization and the procedure in the case of Advisen data, we define the

malicious type as the incidents that belong to “Hack”, “INSD”, “CARD”, and the negligent type

as the incidents that belong to “DISC”, and the rest are categorized into “others”. There is no

“privacy” category in this database.

14The keyword includes: attack, malware, infect, infiltrate, hack, phish, spam, virus, worm, breach.
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Appendix E.3. Risk type in SAS

The categorization of operational risk in SAS is based on the Basel categorization table. 15

There are three levels in this categorization: event risk category (level 1), sub-risk category (level

2), and activity (level 3). Level 1 and 2 in this table are at a very high level and not suitable for

the categorization of cyber risk. Therefore, we focus on the activity level and manually check the

cyber incidents in each type.

After the manual check, the malicious type includes the following categories: ”Account Takeover”,

”Credit fraud”, ”Embezzlement”, ”Extortion”, ”Fraud”, ”Insider trading”, ”Making worthless

deposit”, ”Misappropriation of asset”, ”Money laundering”, ”Computer-related fraud”, ”Hack-

ing damage”, ”Conducting unauthorized transaction”, ”Theft of information (w/monetary loss)”,

”Transaction fraud”, ”Provision of unapproved access to account”, ”Insurance fraud”, ”Forgery”,

”Hacking damage (if not physical damage)”.

The negligent type includes: ”Hardware failure”, ”Software failure”, ”Telecommunications fail-

ure”, ”Utility outage/disruption”, ”Failure in obligation to client”, ”Improper trade/market prac-

tice”, ”Exceeding client exposure limit”, ”Market manipulation”, ”Overcharging”, ”Sale of faulty

product”, ”Anti-competitive action (non-antitrust)”, ”Commercial right infringement”, ”Failure

in duty to shareholders”, ”False or incomplete reporting”, ”Illegal trade”, ”Improper accounting

practice”, ”libel”, ”Obstruction of investigation”, ”Poaching”, ”Regulation breach/avoidance (non-

antitrust)”, ”Theft of trade secret”, ”Model error”, ”Product defect”, ”Service error”, ”Accounting

error/entity attribution error”, ”Billing error”, ”Data entry, maintenance or loading error”, ”De-

livery failure”, ”Miscommunication”, ”Missed deadline or responsibility”, ”Reference data main-

tenance failure”, ”Task misperformance”, ”Failure in mandatory reporting obligation”, ”Delivery

of inaccurate external report”, ”Recording of incorrect client record”, ”Damaging of client asset”,

”Data security failure”, ”Loss of client data”, ”Mismarking of position (intentional)”.

The privacy type includes: ”Breach of privacy”, ”Misuse of confidential client information”,

”Suitability/disclosure failure”, ”Legal document missing/incomplete”.

The “others” category includes: ”Check kiting”, ”Non-physical damage abuse”, ”Theft”, ”Fire”,

”Natural catastrophe”, ”Violence against person”, ”Violence against property”.16

In the next step, to make sure we capture all the malicious cases, we use the keyword list above

to search for incidents in the negligent, privacy, and “others” category. After this procedure, the

categories for cyber incidents in SAS are comparable to the ones in Advisen and PRC.

In addition, the operational incidents in SAS (excluding cyber incidents) are good benchmarks

for studying cyber risk, therefore we also categorize these incidents. To simplify the procedure,

we broadly classify operational incidents into malicious and negligent cases. The malicious type

includes only ”Internal Fraud” and ”External Fraud”, and the rest are categorized into the negligent

type.

15https://www.bis.org/bcbs/qisoprisknote.pdf
16The categories above are not the complete list of categories in the activity level from the Basel categorization

table since not every category has cyber incidents.
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