
The Potential of Self-Regulation for Front-Running Prevention on
DEXes
LIOBA HEIMBACH, ETH Zurich, Switzerland

ERIC SCHERTENLEIB, ETH Zurich, Switzerland

ROGER WATTENHOFER, ETH Zurich, Switzerland

The transaction ordering dependency of the smart contracts building decentralized exchanges (DEXes) allow for predatory

trading strategies. In particular, front-running attacks present a constant risk for traders on DEXes. Whereas legal regulation

outlaws most front-running practices in traditional finance, such measures are ineffective in preventing front-running on

DEXes due to the absence of a central authority. While novel market designs hindering front-running may emerge, it remains

unclear whether the market’s participants, in particular liquidity providers, would be willing to adopt these new designs. A

misalignment of the participant’s private incentives and the market’s social incentives can hinder the market from adopting

an effective prevention mechanism.

We present a game-theoretic model to study the behavior of traders and liquidity providers in DEXes. Our work finds that

in most market configurations, the private interests of traders and liquidity providers align with the market’s social incentives

— eliminating front-running attacks. However, even though liquidity providers generally benefit from embracing the market

that prevents front-running, the benefit is often small and may not suffice to entice them to change strategy in reality. Thus,

we find that inert liquidity providers might require additional incentives to adopt innovative market designs and permit the

market’s successful self-regulation.

1 Introduction

The emergence of decentralized finance (DeFi) on Ethereum [46] greatly enhanced the interest in cryptocurrency

applications. DeFi is a blockchain-based form of finance that utilizes smart contracts to offer many traditional

financial instruments, but without relying on financial intermediaries. A prime example thereof are decentralized
exchanges (DEXes). While traditional exchanges match individual buyers and sellers with the limit order book

mechanism, a DEX algorithmically sets the exchange rate for a trade. To this end, DEXes store liquidity for

exchanges between individual cryptocurrency pairs in smart contracts, referred to as liquidity pools. The trade
size and the respective cryptocurrency pair’s amount and ratio of reserves control the price. The pool charges a

fee for every trade which is proportional to the trade’s input amount and distributed pro-rata amongst the pool’s

liquidity providers.
DEXes are becoming increasingly popular. Yet, the rise of DEXes does not come without caveats, leading to

the characterization of the Ethereum peer-to-peer network as a dark forest. Predatory trading bots prey on user

transactions in Ethereum’s mempool, the public waiting area for transactions. Predatory trading schemes exploit

the lack of privacy given to transactions prior to their execution. Moreover, the smart contracts that build DEXes

are dependent on the transaction order. Generally, these attacks involve the attacker front-running a victim’s

transaction. One of the most frequently observed strategies exploiting this dependency on transaction ordering

is the sandwich attack [41] which we describe in section 3. We focus on sandwich attacks in this work, as this is

the only front-running attack directly impacting the welfare of liquidity providers.
1
Such an attack occurs when

a trading bot front- and back-runs a victim’s transaction, forcing the trade to execute at an unfavorable price.

Between 13 April and 12 May 2023, 239,446 transactions were sandwiched on Ethereum blockchain’s DEXes and

these sandwich attacks generated a profit in excess of US$55M [9].

Given the severity of front-running attacks on DEXes, the market is seeking mechanisms that can prevent such

attacks. While front-running attacks are outlawed in traditional finance, the anonymity of market participants

1
Apart from sandwich attacks, there are destructive front-running attacks [27]. Thereby, the attacker searches for trades that exploit arbitrage

opportunities and front-runs these and is indifferent to whether the victim’s transaction executes. The DEXes volume remains unchanged.

2 • Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer

and the absence of a central authority do not allow for an effective regulatory approach for DEXes. Therefore, they

require new innovative solutions to prevent front-running attacks. In response, multiple approaches to prevent

front-running and, more generally, transaction reordering manipulation are currently under development [29].

These approaches generally ensure that transaction contents are private from the public until an order is agreed

upon. Further, some designs are already being adopted [5, 6].

Even though successful market designs preventing front-running attacks increase market efficiency [34], there

may still be insufficient incentives to adopt these prevention schemes. Liquidity providers, who potentially

benefit from the additional trading volume from sandwich attacks, might be reluctant to embrace such a market.

Examples, where the divergence of private and social incentives has led to adoption failure exist in traditional

limit order book exchanges [20].

In this work, we develop a game-theoretical model to study whether traders and liquidity providers would

embrace DEXes that incorporate a front-running prevention mechanism. Our repeated game consists of two

hypothetical liquidity pools, one allowing sandwich attacks and one implementing a sandwich attack prevention

scheme. Traders and liquidity providers distribute across the two pools, thereby maximizing their private

incentives. Liquidity providers try to maximize their fees earned and the traders seek to execute their order at

the best possible price. Thus, while the presence of sandwich attacks leads to additional trades from the attack, it

reduces the volume of ordinary traders as they receive a poor price.

We find that in equilibrium, the players exclusively utilize the liquidity pool with front-running prevention for

most market configurations — indicating that the market can fix itself. Yet, market conditions exist where the

private incentives of liquidity providers and the system’s social incentives are misaligned. Finally, we show that

even when the private incentives of liquidity providers align with the market’s social incentives, the benefit of

embracing the new market is often negligible. Therefore, despite the alignment, the market may have to provide

additional incentives to entice liquidity providers to adjust their strategy.

2 Related Work
Front-running has long been prevalent in traditional finance [18, 22, 25] where the regulator is tasked with

banning such practices [35, 38]. The lack of a central authority in DeFi, however, means that the market must

regulate itself. Thus, we study whether the private incentives of market participants obstruct the adoption of

innovative market designs preventing front-running.

Eskandir et al. [27] are the first to systematize work surrounding front-running on DeFi. In a similar line of

research, Daiain et al. [24] study the risks of front-running on DEXes. They observe traditional forms of predatory

trading behaviors adapting to the blockchain ecosystem. Park [40] further shows that the pricing rule of most

DEXes gives rise to intrinsically profitable front-running opportunities. By analyzing the market participants’

private incentives to prevent front-running, we build on these earlier works and, in particular, study sandwich

attacks, as they influence the welfare of traders and liquidity providers.

The prevalence of front-running attacks on DEXes is first quantified by Qin et al. [41]. Zhou et al. [50] study

sandwich attacks both analytically and empirically. Both demonstrate the risk stemming from front-running

attacks on DEXes. Our work, on the other hand, focuses on whether the market participant’s private incentives

are disruptive to the adoption of market designs preventing front-running attacks and the associated risks.

Recently, many suggestions for DEX front-running prevention schemes have emerged. For a comprehensive

overview, we refer the reader to Heimbach andWattenhofer [29]. Their works provide an overview of state-of-the-

art prevention mechanisms and find that current schemes do not meet the blockchain ecosystem’s requirements.

We summarise the core ideas behind the most relevant suggestions in the following. The simplest schemes, tune

the transaction parameters to prevent specific attacks on specific protocols [28, 49]. Further, several suggestions

propose that transactions are sent to a trusted third party that is put in charge of ordering the transactions

fairly [1, 2, 5–8, 10, 17, 43]. A parallel line of work, instead of relying on a single entity, trust a generally

The Potential of Self-Regulation for Front-Running Prevention on DEXes • 3

permissoned committee to order the transactions in a fair manner [15, 16, 21, 23, 30–33, 36, 37, 39, 42, 47, 48] —

preventing front-running. Finally, several schemes set the order of transaction by first having users commit to

their transactions on-chain and then only revealing the transaction contents later in a second phase [19, 26, 44].

All of these schemes, thus, aim to preserve the privacy of the transaction contents until an execution order is

agreed upon. In this work, instead of assessing or designing prevention mechanisms, we study a market with an

ideal prevention mechanism to analyze whether the private incentives would steer market participants to accept

such a market design.

Budisch et al. [20] examine the incentives of exchanges’ to embrace market design innovations that eliminate

latency arbitrage and HFT trading. Their work finds that adoption failures arise in traditional limit order book

exchanges. In particular, the divergence of private and social incentives hinders the market from accepting new

market designs. We study the incentives of liquidity providers in DEXes and show that their private incentives

generally align with the system’s social interests: demonstrating that liquidity providers can be incentivized to

adopt new market designs preventing front-running attacks.

3 Preliminaries

In the following, we detail the trading mechanism of the biggest DEXes and introduce the sandwich attack

specifics.

3.1 Automated Market Maker

As its name suggests, trade execution on automated market makers (AMMs) is automatic, and the price is controlled

by an algorithm with liquidity being supplied by individual liquidity providers rather than brokers or market

makers. A host of AMM variants exist, each with its specific pricing mechanism. We focus on the most widely

adopted subclass of AMMs: constant product market makers (CPMMs) [4]. For each tradeable cryptocurrency pair,

the CPMM stores assets of both cryptocurrencies in a liquidity pool. The CPMM then ensures that the product

between the amounts of the two reserved pool currencies stays constant. This property ensures that the price

for swapping between these pairs mimics the behavior of a demand curve of a normal good. Both Uniswap and

Sushiswap, two of the biggest DEXes, employ the CPMM for pricing. The original CPMM design, as deployed

by Uniswap V2 [13] and Sushiswap [11], utilizes the same liquidity for the pool’s entire price range. Consider a

pool 𝑋 ⇌ 𝑌 between 𝑋 -tokens and 𝑌 -tokens with respective reserves 𝑥 and 𝑦. Then the pool’s marginal price

indicating the pool’s current price for 𝑋 -token in terms of 𝑌 -token is 𝑃 = 𝑦/𝑥 [13]. Further, the pool’s liquidity is

defined as 𝐿 =
√
𝑥 · 𝑦. This liquidity needs to support trading along the entire price range (0,∞) in the original

CPMM design.

In the newest Uniswap design (V3) [14], liquidity providers choose the price range [𝑃𝑎, 𝑃𝑏] for which they

provide liquidity. This concentration of liquidity is intended to increase the capital efficiency, as the liquidity

only needs to support trade execution in the corresponding price range. Liquidity providers can only choose

from a discrete set of price range boundaries that are defined by the pool’s initialized ticks. Between each pair

of initialized ticks, the CPMM only needs to maintain enough reserves to support trading between the price

boundaries. One can simulate a constant product pool with adjusted larger reserves, referred to as virtual reserves,
between any pair of neighboring initialized ticks.

For a price range [𝑃𝑎, 𝑃𝑏] between two neighbouring initialized ticks, the liquidity inside the tick is given by 𝐿

and the marginal price is 𝑃 . The CPMM ensures that the constant product of the virtual reserves 𝑥 and 𝑦 stays

constant, i.e., 𝑥 · 𝑦 = 𝑘 = 𝐿2, where 𝑘 is the constant product of the reserves in the considered price interval. As

on Uniswap V2, the marginal price is 𝑃 = 𝑦/𝑥 and the liquidity is 𝐿 =
√
𝑥 · 𝑦 [14]. Thus, the virtual reserves are

4 • Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer

then given by 𝑥 = 𝐿/
√
𝑃 and 𝑦 = 𝐿 ·

√
𝑃 . For the sake of simplicity, we focus on trading between two neighboring

initialized ticks and refer to virtual reserves simply as reserves in this work.
2

The exchange rate received by traders is dependent on their trade size and the number of tokens reserved

in the liquidity pool. Consider, again, a liquidity pool between 𝑋 -token and 𝑌 -token, 𝑋 ⇌ 𝑌 . We denote the

respective initial (virtual) reserves prior to any trading as 𝑥 and 𝑦, respectively, and use b and 𝜐 for the reserves

of 𝑋 and 𝑌 at any time during the trading process. Thus, if a trader adds an infinitesimal amount 𝑑b to the pool,

the following amount of 𝑌 is extracted

𝑑𝜐 = −𝑥𝑦
b2

𝑑b.

This expression follows directly from the constant product property. Note that the sign convention we choose is

relative to the pool, i.e., Δ𝜐 < 0 for a trader buying 𝑌 -tokens. Further, observe that the price per 𝑌 -token increases

with the input amount. Thus, traders have to pay more per desired token the larger their trade is, resulting in

expected slippage which is the difference between the pool’s marginal price and the actual price received by the

trader. Note that the expected slippage is lower in more liquid pools, i.e., those with larger stored reserves.

From the infinitesimal price it follows that a trader wishing to sell 𝛿𝑥 𝑋 -tokens will receive 𝛿𝑦 𝑌 -tokens, where

𝛿𝑦 = −
∫ 𝑥+(1−𝑓)𝛿𝑥

𝑥

−𝑥 · 𝑦
b2

𝑑b = 𝑦 − 𝑥 · 𝑦
𝑥 + (1 − 𝑓)𝛿𝑥

=
𝑦 (1 − 𝑓)𝛿𝑥
𝑥 + (1 − 𝑓)𝛿𝑥

,

and 𝑓 is the transaction fee which is charged relative to the input amount 𝛿𝑥 and is distributed pro-rata to the

tick’s liquidity providers. The sign in front of the integral is negative as the trader receives the 𝑌 -tokens extracted

from the pool. Note that the (1 − 𝑓)𝛿𝑥 in the upper integral bound corresponds to the amount of 𝑋 added to the

pool after deduction of the transaction fee. Thus, post-execution the reserves of 𝑋 and 𝑌 will be 𝑥 + (1 − 𝑓)𝛿𝑥
𝑋 -token and 𝑦 − 𝛿𝑦 𝑌 -tokens.

The time at which a trade executes is unclear to the trader, as their transactions will only be confirmed upon

block inclusion. In the meantime, other transactions changing the pool’s state might occur. The change in the

pool’s state introduces a difference between the trader’s expected price at the time of submission and the actual

price at the time of execution. This price change is known as unexpected slippage. To ensure the price of the

transaction does not deviate significantly from the expectation, traders specify a slippage tolerance, indicating the
maximum unexpected price movement they are willing to accept. A trade expecting 𝛿𝑦 𝑌 -tokens at the time of

transaction submission will only execute if it receives no less than (1 − 𝑠)𝛿𝑦 𝑌 -tokens, where 𝑠 is the slippage
tolerance. Typical slippage tolerances are 𝑠 < 0.03 [45].

3.2 Sandwich Attacks
A too small slippage tolerance results in frequent transaction failure. However, the slippage tolerance also

gives an opening for sandwich attacks. On Ethereum, users broadcast their transactions to the network. The

transaction waits in the mempool until it is included in a block by a validator. During this time, the transaction

is visible to predatory trading bots and runs the risk of being front- and back-run as part of a sandwich attack.

Predatory trading bots scan the mempool’s inflowing transaction stream searching for profitable sandwich attack

opportunities.

As validators control the ordering in a block, sandwich attackers can provide validators with the necessary

(financial) incentives to achieve their desired transaction ordering. In fact, front-running-as-a-service schemes,

such as Flashbots [6] and Eden network [5], facilitate this interaction between sandwich attackers and validators.

On the other hand, these services can also be used for front-running prevention, but users must deliberately seek

them out rather than being truly incorporated in the market design.

2
As our analysis focuses on a time-frame where the fair market price between 𝑋 - and 𝑌 -tokens remains constant (cf. Section 4), trading

is also likely to occur within a small price range and thus will likely remain within one tick. To cover trading across ticks, one can easily

reapply our analysis. Note that trading within a tick on Uniswap V3 is mostly the same as on Uniswap V2.

The Potential of Self-Regulation for Front-Running Prevention on DEXes • 5

𝑋 reserves

𝑌
r
e
s
e
r
v
e
s

𝑇

𝛿𝑥

𝛿𝑦

(a) The execution of transaction𝑇 without a sandwich attack.
The transaction𝑇 receives the𝑌 -assets at the expected price.

𝑋 reserves

𝑌
r
e
s
e
r
v
e
s

𝐴𝐹

𝑇 𝐴𝐵 𝑎𝑦

𝑎𝑦

𝑎in𝑥 𝑎out𝑥

𝛿𝑥

˜𝛿𝑦

(b) The execution of transaction 𝑇 with a sandwich attack.
Transaction 𝑇 is first front-run by transaction 𝐴𝐹 and then
back-run by transaction 𝐴𝐵 .

Fig. 1. Execution of victim transaction 𝑇 in pool 𝑋 ⇌ 𝑌 . without (cf. Figure 1a) and with (cf. Figure 1b) sandwich attack. In
the presence of an attack the trader receives fewer Y-tokens ˜𝛿𝑦 < 𝛿𝑦 while the attacker makes a profit, i.e., 𝑎in𝑥 < 𝑎out𝑥 .

A sandwich attack involves the attacker front-running the victim’s transaction, exchanging 𝑋 -token for 𝑌 -

token in transaction𝐴𝐹 . The attacker’s front-running transaction purchases the same asset as the victim: 𝑌 -token.

Thereby, the attacker drives up the asset 𝑌 ’s price. The following victim transaction 𝑇 then buys 𝑌 -token at a

higher price and further inflates 𝑌 ’s price. To conclude the attack, the attacker back-runs the victim’s transaction,

selling 𝑌 -assets at the inflated price with transaction 𝐴𝐵 .

To provide a conceptual understanding of sandwich attacks, we visualize a victim’s trade𝑇 without a sandwich

attack in Figure 1a. Figure 1b then shows how a sandwich attack alters the transaction𝑇 . We observe that without

the sandwich attack, the victim expects a greater output 𝛿𝑦 (cf. Figure 1a) than the output
˜𝛿𝑦 it receives in the

presence of a sandwich attack (cf. Figure 1b). The attacker’s front-running inflates 𝑌 -asset’s price. Further, we

observe that the attacker’s output 𝑎out𝑥 of the back-running transaction 𝐴𝐵 exceeds the attacker’s input 𝑎in𝑥 (cf.

Figure 1b). The difference 𝑎out𝑥 − 𝑎in𝑥 presents the attackers profit, as the attacker’s input 𝑎𝑦 to transaction 𝐴𝐵 is

the output of transaction 𝐴𝐹 .

Lastly, we note that at first glance liquidity providers appear to benefit from sandwich attacks as they lead to

increased trading volume, and therefore, collected fees. However, ordinary traders could reduce their trading

activity in the presence of sandwich attacks, as they receive a worse price than the market price. We will study

this interplay by analyzing the effects of sandwich attacks on the utility of both traders and liquidity providers.

4 Model
We model a system with two liquidity pools Pool𝑁 and Pool𝑊 . Both pools facilitate exchanges for the same

cryptocurrency pair: 𝑋 ⇌ 𝑌 . While a scheme to prevent sandwich attacks is implemented in Pool𝑁 , sandwich

attacks are common practice in Pool𝑊 . With our model, we will study whether DEX participants are able to

self-regulate and adopt a DEX with front-running prevention in place.

There are four types of players in our model: traders, liquidity providers, sandwich attackers, and price

arbitrageurs. Traders and liquidity providers strive tomaximize their personal utility (cf. Section 4.3 and Section 4.4)

6 • Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer

across two liquidity pools Pool𝑁 and Pool𝑊 . In maximizing their utilities, traders and liquidity providers account

for the effects of sandwich attacks and price arbitrageurs.

Without sandwich attacks, trades in Pool𝑁 execute at the expected price.
3
In Pool𝑊 , on the other hand,

sandwich attack bots make an attack whenever it is profitable (cf. Section 4.1). We denote the fraction of the

total liquidity placed in Pool𝑁 by 𝑝 . Thus, the reserves in Pool𝑁 are 𝑥𝑁 = 𝑝 · 𝑥 𝑋 -tokens and 𝑦𝑁 = 𝑝 ·𝑦 𝑌 -tokens,

and 𝑥𝑊 = (1 − 𝑝)𝑥 𝑋 -tokens and 𝑦𝑊 = (1 − 𝑝)𝑦 𝑌 -tokens in Pool𝑊 . Given the price 𝑃𝑋→𝑌 of 𝑋 -token, we have

𝑃𝑋→𝑌 =
𝑦

𝑥
=
𝑦𝑁

𝑥𝑁
=
𝑝 · 𝑦
𝑝 · 𝑥 =

𝑦𝑊

𝑥𝑊
=

(1 − 𝑝)𝑦
(1 − 𝑝)𝑥 .

We emphasize that the social incentives of our system are to completely adapt Pool𝑁 without front-running. In

the presence of sandwich attacks in Pool𝑊 , the trades of ordinary traders do not execute at the effective market

price but rather at an unfavorable rate. Further, we purposefully exclude incentives of sandwich attackers and

price arbitrageurs when discussing the system’s incentives. Including their incentives would turn the game into a

zero-sum game. Thus, in the presence of profitable sandwich attacks and price arbitrages, the remaining market

participants (traders and liquidity providers) collectively lose money.

Further note that throughout, we assume the slippage tolerance 𝑠 (0 < 𝑠 < 1) to be fixed, i.e., all victim

transactions have the same slippage tolerance. This assumption is reasonable as most DEXes on Ethereum, as,

while the slippage tolerance can be modified, most apply a default setting [3, 11, 12]. Similarly, the transaction

fee 𝑓 (0 < 𝑓 < 1) is identical in both pools. Finally, we disregard the gas fee, the fee paid to validators for block

inclusion on the Ethereum blockchain, for all players in our analysis. The gas fee would add a fixed cost to every

trade and liquidity movement. However, for the sake of simplicity and as the gas fee is not part of the CPMM

market mechanism itself, we assume the gas fee to be zero.

4.1 Sandwich Attackers

Sandwich attackers observe the inflowing transactions in Pool𝑊 . Upon noticing a trade entering the mempool

of Pool𝑊 , they compute the maximal input for the sandwich attack and assess the attack’s profitability. The

maximal input infers the maximal acceptable price movement on the trader, such that the trade still executes.

Attackers conduct any such profitable attack. We find the maximal input of a sandwich attack and study their

profitability in Section 5.1.

The victim submits an order 𝑇𝑊 wishing to exchange 𝛿𝑥,𝑊 > 0 𝑋 -tokens in Pool𝑊 for 𝑌 -tokens and sets a

slippage tolerance 𝑠 . When submitting the trade 𝑇𝑊 , the victim is estimated to receive 𝛿𝑦,𝑊 𝑌 -tokens, i.e., the

number of tokens the victim would receive if no other trade is executed beforehand. On the other hand, when a

sandwich attack occurs, the attacker front-runs the victim with transaction 𝐴𝐹 exchanging 𝑎in𝑥 > 0 𝑋 -tokens for

𝑎𝑦 𝑌 -tokens. Now the victim’s transaction executes at a worse price. To finish the attack, the attacker exchanges

𝑎𝑦 𝑌 -tokens for 𝑎
out

𝑥 𝑋 -tokens in the back-running attack transaction 𝐴𝐵 .

We define the attacker’s utility as their profit:

Definition 4.1. The attacker’s utility𝑈𝐴 (𝛿𝑥,𝑊 , 𝑓 , 𝑠, 𝑝, 𝑥,𝑦) is given by

𝑎out𝑥 (𝛿𝑥,𝑊 , 𝑓 , 𝑠, 𝑝, 𝑥,𝑦) − 𝑎in𝑥 (𝛿𝑥,𝑊 , 𝑓 , 𝑠, 𝑝, 𝑥,𝑦).
Here, 𝑎in𝑥 (𝛿𝑥,𝑊 , 𝑓 , 𝑠, 𝑝, 𝑥,𝑦) is the input of the front-running transaction and 𝑎out𝑥 (𝛿𝑥,𝑊 , 𝑓 , 𝑠, 𝑝, 𝑥,𝑦) is output of the
back-running transaction.

We will assume that if a profitable sandwich attack exists, it executes successfully. A bot must have access to the

necessary funds and achieve its desired transaction ordering which can be accomplished through front-running-
as-a-service platforms such as Flashbots [6]. These services further guarantee their users that a transaction

3
Note while it is possible for there to be several trades in a single block, we can assume them to only amount to natural price fluctuations. In

the time frame of a block, they can be assumed to be negligible [28].

The Potential of Self-Regulation for Front-Running Prevention on DEXes • 7

will only be included in a block if it executed successfully. Therefore, it is reasonable to assume that profitable

sandwich attacks execute successfully.

4.2 Price Arbitrageurs

We consider a time window, during which the external market price between the pools’ two cryptocurrencies is

constant. Then, price arbitrageurs ensure that the pool’s price returns to 𝑃𝑋→𝑌 after every trade sequence (either

an individual victim transaction in Pool𝑁 or a victim transaction together with a sandwich attack in Pool𝑊).

Thus, price arbitrageurs balance the market after any set of trades such that it reflects the fair market price.

Letting the pool return to its initial state allows us to study the system analytically in the presence of an infinitely

long trade flow as opposed to a fixed set of trades.

4.3 Traders

Our game captures a continuous stream of trade orders. Traders wish to sell 𝑋 -tokens for 𝑌 -tokens, as they

have a personal use for 𝑌 -tokens, and thereby, associate a relative benefit 𝛼 > 0 with 𝑌 -tokens. The private

benefit associated with the number of 𝑌 -tokens a trader buys, ˜𝛿𝑦,•, is thus given by (1 + 𝛼) ˜𝛿𝑦,• in Pool•. The
trader strategy space is 𝑆𝑇 = {(𝛿𝑥,𝑁 , 𝛿𝑥,𝑊) |𝛿𝑥,𝑁 , 𝛿𝑥,𝑊 ∈ R≥0}, where 𝛿𝑥,𝑁 is the trade input in Pool𝑁 and 𝛿𝑥,𝑊 is

the trade input in Pool𝑊 . Thus, traders pick a non-negative trade size in both pools. In our game, traders set their

trade sizes across both pools to maximizes their personal benefit.

We model many individual traders as a continuous stream of trade orders. Here, we assume that all traders

have the same relative benefit 𝛼 , and also consider distribution on 𝛼 to capture non-uniformity among traders.

In Pool𝑁 , where there are no sandwich attacks, the tokens received by traders
˜𝛿𝑦,𝑁 equals the expected trade

output 𝛿𝑦,𝑁 , i.e., ˜𝛿𝑦,𝑁 = 𝛿𝑦,𝑁 . On the other hand, in Pool𝑊 traders experience sandwich attacks which reduce the

expected output.
4

In addition to the benefits traders obtain from the received 𝑌 -tokens, they also associate a cost with the trade’s

input, which is given by 𝑃𝑋→𝑌𝛿𝑥,•. Here, 𝛿𝑥,• is the trade input in 𝑋 -tokens, and 𝑃𝑋→𝑌 is the fair exchange rate

from 𝑋 -tokens to 𝑌 -tokens. By combining the trader benefit and cost in both pools, we obtain their utility in

Definition 4.2. Note that while we focus on trades from 𝑋 to 𝑌 , by symmetry, the analysis applies directly in the

opposite direction.

Definition 4.2. The trader’s utility 𝑈𝑇 (𝛿𝑥,𝑁 , 𝛿𝑥,𝑊 , 𝛼, 𝑓 , 𝑠, 𝑝, 𝑥,𝑦) for a trade with input 𝛿𝑥,𝑁 ≥ 0 in Pool𝑁 and

input 𝛿𝑥,𝑊 ≥ 0 in Pool𝑊 is given by

(1 + 𝛼)𝛿𝑦,𝑁 (𝑓 , 𝑝, 𝑥,𝑦) − 𝑦

𝑥
𝛿𝑥,𝑁 + (1 + 𝛼)𝛿𝑦,𝑊 (𝑓 , 𝑝, 𝑥,𝑦, 𝑠) − 𝑦

𝑥
𝛿𝑥,𝑊 ,

Here, 𝛿𝑦,𝑁 (𝑓 , 𝑝, 𝑥,𝑦) and 𝛿𝑦,𝑊 (𝑓 , 𝑝, 𝑥,𝑦, 𝑠) are the outputs of the trade in the each pool.

In our model, trades execute across both pools to maximize the trader utility 𝑈𝑇
. Given a distribution on the

relative benefit 𝛼 , the trading volume in either pool depends on the pool’s reserve, transaction fee, and slippage

tolerance.

4.4 Liquidity Providers

Liquidity providers supply reserves to the two pools. Knowledge of the trader’s utility is assumed for liquidity

providers. Further, liquidity providers are aware of the behavior of sandwich attackers and price arbitrageurs.

We consider the liquidity providers to be rational, i.e., they optimally place their liquidity across the pools such

4
Traders assume for there to be a sandwich attack for every transaction in Pool𝑊 . As sandwich attacks only execute when they are profitable,

there is not always a sandwich attack. However, this is only the case for small transactions (cf. Section 5.1) and unrealistic parameter

configurations (cf. Section 6), and it is, therefore, negligible.

8 • Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer

that they maximize their received fees. The system has 𝑛 ∈ N liquidity providers. Both the number of liquidity

providers and the system’s total reserves are fixed during the time of this analysis. A liquidity provider 𝐿𝑃𝑖 for

𝑖 ∈ [0, . . . , 𝑛 − 1] holds a proportion 𝑙𝑖 (0 < 𝑙𝑖 ≤ 1) of the total liquidity 𝐿 =
√
𝑥 · 𝑦, where 𝑥 and 𝑦 are the system’s

total reserves. We note that

∑𝑛−1
𝑖=0 𝑙𝑖 = 1.

Liquidity provider 𝐿𝑃𝑖 ’s strategy space is given by all possible distributions of their liquidity across both pools:

𝑆𝐿𝑃𝑖 = {(𝑞𝑖𝑙𝑖𝐿, (1 − 𝑞𝑖)𝑙𝑖𝐿) |0 ≤ 𝑞𝑖 ≤ 1}. More precisely, a liquidity provider 𝐿𝑃𝑖 can choose the proportion 𝑞𝑖 of

their liquidity in Pool𝑁 . They automatically place the remaining proportion 1 − 𝑞𝑖 of their liquidity in Pool𝑊 .

Knowing the distribution of the remaining liquidity (1 − 𝑙𝑖)𝐿 across the pools and behavior of the other market

participants, the liquidity provider chooses the strategy that maximizes the received fees. We define the liquidity

provider’s utility as the earned fees:

Definition 4.3. The utility 𝑈 LP (𝑓 , 𝛼, 𝑠, 𝑥,𝑦, 𝑞𝑖 , 𝑙𝑖) of liquidity provider 𝐿𝑃𝑖 that places 𝑞𝑖𝑙𝑖𝐿 liquidity in Pool𝑁

and (1 − 𝑞𝑖)𝑙𝑖𝐿 in Pool𝑊 represents the fees collected in both pools.

Our game starts with an arbitrary initial liquidity distribution. One after the other, liquidity providers can

change their personal liquidity distribution. The system is in a Nash equilibrium if no liquidity provider can

improve their utility by unilaterally changing their liquidity distribution (strategy). We will loosen the restriction

on equilibria and also consider Y-equilibria, where a liquidity provider only changes strategy if it increases their

utility by a factor greater than 1 + Y (Y ≥ 0). We analyze the system with this relaxation on equilibria, as inert

liquidity providers are unlikely to change strategies for infinitesimal utility increases due to the effort involved.

This adjustment allows us to analyze whether the potential private benefits of liquidity providers suffice.

5 Strategies
The optimal strategies of sandwich attackers and price arbitrageurs are straightforward. Sandwich attackers

always execute the largest possible profitable attack, i.e., the attack inferring the maximal acceptable price

movement on the trader (cf. Section 5.1) and price arbitrageurs re-balance the market after every trade sequence.

Traders set their trade sizes across both pools optimally to maximize their utility, knowing the pools’ liquidity,

transaction fee, and the potential presence of sandwich attacks (cf. Section 5.2). Finally, liquidity providers

distribute their liquidity to maximize the received fees. Liquidity providers account for the effects altering their

liquidity distribution has on the trading volume of the three other market participants (cf. Section 5.3).

5.1 Sandwich Attack Profitability

A sandwich attacker only executes an attack whenever it is profitable, i.e., when𝑈𝐴
is positive (cf. Definition 4.1).

We find that the sandwich attackers profit for a front-running transaction of size 𝑎in𝑥 can be calculated analytically

in Lemma 5.1.

Lemma 5.1. The sandwich attacker’s profit from an attack of size 𝑎in𝑥 to the front-running transaction on a victim’s
transaction 𝛿𝑥,𝑊 can be given analytically.

Proof. First, the sandwich attacker swaps 𝑎in𝑥 and receives

𝑎𝑦 = −
∫ (1−𝑝)𝑥+(1−𝑓)𝑎in𝑥

(1−𝑝)𝑥

−𝑥 · 𝑦
b2

𝑑b,

in the front-running transaction 𝐴𝐹 . Then the trader sells 𝛿𝑥,𝑊 and in return receives

˜𝛿𝑦,𝑊 = −
∫ (1−𝑝)𝑥+(1−𝑓) (𝑎in𝑥 +𝛿𝑥,𝑊)

(1−𝑝)𝑥+(1−𝑓)𝑎in𝑥

−𝑥 · 𝑦
b2

𝑑b .

Finally, the sandwich attacker uses 𝑎𝑦 𝑌 -tokens to buy 𝑎out𝑥 𝑋 -tokens in its back-running transaction 𝐴𝐵
. Due

to the transaction fee 𝑓 being applied to the input, only 𝑎𝑦 = (1 − 𝑓)𝑎𝑦 of the initially swapped 𝑎𝑦 re-enters the

The Potential of Self-Regulation for Front-Running Prevention on DEXes • 9

pool. Therefore, we write

𝑎𝑦 =

∫ (1−𝑝)𝑥+(1−𝑓) (𝑎in𝑥 +𝛿𝑥,𝑊)−𝑎out𝑥

(1−𝑝)𝑥+(1−𝑓) (𝑎in𝑥 +𝛿𝑥,𝑊)

−𝑥 · 𝑦
b2

𝑑b,

where the sign change in front of the integral is the result of 𝑌 -assets being returned to the pool.

The amount of 𝑋 the attacker holds after the transaction 𝑎out𝑥 can be found by equating the two integrals for

𝑎𝑦 and 𝑎𝑦 , using 𝑎𝑦 = (1 − 𝑓)𝑎𝑦 , and solving for 𝑎out𝑥 . This yields the profit of the sandwich attacker

𝑈𝐴 = 𝑎out𝑥 − 𝑎in𝑥 =
(1 − 𝑓)2𝑎in𝑥 ((1 − 𝑝)𝑥 + (1 − 𝑓) (𝑎in𝑥 + 𝛿𝑥,𝑊))2

((1 − 𝑝)𝑥)2 + (2 − 𝑓) (1 − 𝑓) (1 − 𝑝)𝑥 · 𝑎in𝑥 + (1 − 𝑓)3𝑎in𝑥 (𝑎in𝑥 + 𝛿𝑥,𝑊)
− 𝑎in𝑥 .

□

We will analyze the conditions under which profitable sandwich attacks exist. First, we determine a bound

for victim’s trade size 𝛿𝑥,𝑊 such that a profitable sandwich attack exists (cf. Lemma 5.2). From Lemma 5.2 we

can follow that a profitable attack only exists, if the victim’s trade size 𝛿𝑥,𝑊 exceeds a fee dependent threshold

𝛿min

𝑥 = 𝑓 (1 − 𝑝)𝑥/(1 − 𝑓)2 . Hence, only relatively large trades are prone to sandwich attacks.

Lemma 5.2. A sandwich attack of size 𝑎in𝑥 is only profitable if the trader’s transaction size exceeds

𝑓 ((1 − 𝑝)𝑥 + 𝑎in𝑥 (1 − 𝑓))/(1 − 𝑓)2.

Proof. The expression for 𝛿min

𝑥 follows from Lemma 5.1 by solving𝑈𝐴 = 0. The minimum transaction size for

which a profitable sandwich attack exists is obtained by setting 𝑎in𝑥 = 0. □

Next, we explore what limits the attacker’s maximum profit to show that it is optimal for sandwich attackers

to execute the attack with maximal input size, i.e., the attack that infers the maximal acceptable price movement,

as dictated by the slippage tolerance of the trader. In Lemma 5.3 we show that the attacker’s maximal input 𝑎𝑠𝑥
for which a victim’s transaction still executes can be calculated analytically.

Lemma 5.3. The sandwich attacker’s maximal input, 𝑎𝑠𝑥 , for a transaction exchanging 𝛿𝑥,𝑊 𝑋 -tokens with slippage
tolerance 𝑠 such that the victim’s trade still executes can be given analytically.

Proof. We consider a sandwich attack with initial input 𝑎in𝑥 to the front-running transaction. The output of

the victim transaction selling 𝛿𝑥,𝑊 becomes

˜𝛿𝑦,𝑊 = −
∫ (1−𝑝)𝑥+(1−𝑓) (𝑎in𝑥 +𝛿𝑥,𝑊)

(1−𝑝)𝑥+(1−𝑓)𝑎in𝑥

−𝑥 · 𝑦
b2

𝑑b .

The victims transaction will, however, only go through, if

˜𝛿𝑦,𝑊 ≥ (1 − 𝑠)𝛿𝑦,𝑊

−
∫ (1−𝑝)𝑥+(1−𝑓) (𝑎in𝑥 +𝛿𝑥,𝑊)

(1−𝑝)𝑥+(1−𝑓)𝑎in𝑥

−𝑥 · 𝑦
b2

𝑑b ≥ (1 − 𝑠)
(
−

∫ 𝑥+(1−𝑓)𝛿𝑥,𝑊

(1−𝑝)𝑥

−𝑥 · 𝑦
b2

𝑑b

)
.

Thus, the attacker’s maximal input 𝑎𝑠𝑥 increases the slippage incurred by the victim to their tolerance, i.e.,

˜𝛿𝑦,𝑊 = (1 − 𝑠)𝛿𝑦,𝑊 . Solving for 𝑎𝑠𝑥 , we find that the maximal input is

𝑎𝑠𝑥 =
1

2

(√︃
𝛿2
𝑥,𝑊

(1 − 𝑓)2 + 4(1−𝑝)𝑥 ((1−𝑝)𝑥+𝛿𝑥,𝑊 (1−𝑓))
1−𝑠 − 2(1 − 𝑝)𝑥

1 − 𝑓
− 𝛿𝑥,𝑊

)
.

□

However, for very large slippage tolerances the size of the sandwich attack is limited. To see this we can

consider the asymptotic behaviour of Lemma 5.1 in the limit of very large attack sizes 𝑎in𝑥 : lim𝑎in𝑥 →∞𝑈𝐴 =

10 • Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer

(a) Attack size 𝑎in𝑥 achieving max profit 𝑈𝐴 vs. the victim’s
trade size. 𝑎in𝑥 is found by maximizing the attacker’s profit
w.r.t. 𝑎in𝑥 .

(b) Maximum sandwich attack size dependent on the victim’s
transaction size and slippage tolerance.

Fig. 2. Limits on the sandwich attack size in terms of profitability (left) and slippage tolerance (right) for 𝑓 = 0.3%. Note the
vast difference in scale of the vertical axis, demonstrating that the attack is limited by the slippage tolerance.

lim𝑎in𝑥 →∞ −𝑓 𝑎in𝑥 → −∞. We, thus, analyze whether the slippage tolerance or profitability limits the sandwich

attack size and plot the sandwich attack size that achieves the maximum profit 𝑈𝐴
as a function of the victim’s

transaction size 𝛿𝑥,𝑊 in Figure 2a. Figure 2b shows the sandwich attacker’s maximal input 𝑎𝑠𝑥 as a function of the

the victim’s transaction size 𝛿𝑥,𝑊 for different slippage tolerances. Note the vast difference in scale, demonstrating

that the sandwich attack size is clearly limited by the slippage tolerance. Thus, in realistic market configurations,

the sandwich attackers always execute the attack with maximal possible input size 𝑎𝑠𝑥 .

5.2 Trade Sizes

Traders wish to maximize their utility𝑈𝑇 (𝛿𝑥,𝑁 , 𝛿𝑥,𝑊 , 𝛼, 𝑓 , 𝑠, 𝑝, 𝑥,𝑦) (cf. Definition 4.2), i.e., the difference between

the benefit from receiving 𝑌 -tokens and the trade’s costs. The utility function accounts for sandwich attacks

in Pool𝑊 and assumes that the transaction output is reduced by the slippage tolerance. We show in Lemma 5.4

that the optimal transaction size, maximizing utility 𝑈𝑇
, in Pool𝑁 (𝛿

opt

𝑥,𝑁
) and Pool𝑊 (𝛿

opt

𝑥,𝑊
) can be expressed

analytically. Observe that the transaction size is proportional to the pool’s reserves of 𝑋 -token. Further, we

can see that the effects of the slippage tolerance on the trade size are identical to those of the transaction fee.

Thus, the combination of transaction fee 𝑓 and slippage tolerance 𝑠 in Pool𝑊 is from the trader’s perspective

equivalent to a larger transaction fee equaling 𝑓 + 𝑠 − 𝑓 · 𝑠 in Pool𝑁 . Therefore, the transaction size in Pool𝑁 is

always larger than in Pool𝑊 , and we follow that the trader’s utility is maximized for 𝑝 = 1. We also note that the

optimal transaction size increases with 𝛼 and decreases with the transaction fee 𝑓 , as well as, where applicable,

the slippage tolerance 𝑠 .

Lemma 5.4. A trade of size 𝛿opt
𝑥,𝑁

= max(0, 𝑝 · 𝑥 (
√︁
(1 + 𝛼) (1 − 𝑓) − 1)) maximizes a trader’s utility𝑈𝑇 in Pool𝑁

and in Pool𝑊 the optimum is at 𝛿opt
𝑥,𝑊

= max(0, (1 − 𝑝)𝑥 (
√︁
(1 + 𝛼) (1 − 𝑠) (1 − 𝑓) − 1)).

Proof. Without loss of generality, we maximize the trader’s utility in each pool independently and start with

Pool𝑁 . The trader’s utility in Pool𝑁 is given by

𝑈𝑇
𝑁 = (1 + 𝛼) (1 − 𝑓)𝛿𝑥,𝑁𝑝 · 𝑦

(1 − 𝑓)𝛿𝑥,𝑁 + 𝑝 · 𝑥 − 𝑦

𝑥
𝛿𝑥,𝑁 .

The Potential of Self-Regulation for Front-Running Prevention on DEXes • 11

We differentiate the trader’s utility in Pool𝑁 , 𝑈
𝑇
𝑁
, with respect to the transaction size 𝛿𝑥,𝑁 to find the transaction

size 𝛿
opt

𝑥,𝑁
maximizing the trader’s utility. We obtain

𝜕𝛿𝑥,𝑁𝑈
𝑇
𝑁 =

(1 + 𝛼) (1 − 𝑓)𝑝2 · 𝑥 · 𝑦
(𝛿𝑥,𝑁 (1 − 𝑓) + 𝑝 · 𝑥)2 − 𝑦

𝑥
,

and the two zero crossing of 𝜕𝛿𝑥,𝑁𝑈
𝑇
𝑁
are:

𝑝 · 𝑥 (±
√︁
(1 + 𝛼) (1 − 𝑓) − 1).

For our parameters, 𝑥,𝑦, 𝛼 > 0, 0 < 𝑓 < 1, 0 ≤ 𝑝 ≤ 1, the second derivative, 𝜕2
𝛿𝑥,𝑁

𝑈𝑇
𝑁
, is only negative for the

following zero crossing

𝛿max

𝑥,𝑁 = 𝑝 · 𝑥 (
√︁
(1 + 𝛼) (1 − 𝑓) − 1).

Thereby, 𝛿max

𝑥,𝑁
maximizes the traders utility. The trader optimally sells 𝛿

opt

𝑥,𝑁
= max(0, 𝛿max

𝑥,𝑁
) in Pool𝑁 .

We proceed analogously as above for Pool𝑊 and find the trader the optimally places 𝛿
opt

𝑥,𝑊
= max(0, 𝛿max

𝑥,𝑊
) in

Pool𝑊 . In the previous,

𝛿max

𝑥,𝑊 = (1 − 𝑝)𝑥 (
√︁
(1 + 𝛼) (1 − 𝑠) (1 − 𝑓) − 1).

The trade inputs to maximize the trader’s utility can, thus, be determined analytically and are given by 𝛿
opt

𝑥,𝑁
=

max(0, 𝛿max

𝑥,𝑁
) and 𝛿opt

𝑥,𝑊
= max(0, 𝛿max

𝑥,𝑊
). □

With the help of Lemma 5.4, we can obtain bounds for relative benefit 𝛼 , such that traders benefit from trading

in Pool𝑁 and Pool𝑊 . A trader executes a trade in Pool𝑁 , as long as their 𝛼 exceeds 𝛼 > 𝛼min

𝑁
= 𝑓 /(1 − 𝑓).

Notice that this bound only depends on the transaction fee 𝑓 . In Pool𝑊 , a trader will only execute a trade if

𝛼 > 𝛼min

𝑊
0 = 𝑓 + 𝑠 − 𝑠 · 𝑓 /((1 − 𝑓) (1 − 𝑠)).

To summarise, traders can analytically determine the transaction size that optimizes their utility given the

pools’ parameters. As expected, the traders’ utility is maximized when all liquidity is in Pool𝑁 . In the following

section, we will investigate how liquidity providers distribute their liquidity across the two pools’, knowing that

traders execute optimal transactions.

5.3 Liquidity Distribution

A liquidity provider’s utility directly corresponds to the received fees (cf. Definition 4.3). We, therefore, first

quantify the system’s total fees given traders with relative benefit 𝛼 . Note that the total fees include the fees

received from traders’ transactions, sandwich attacks (whenever applicable), and price arbitrage.

In Lemma 5.5 we find that the total fees are proportional to 𝑝 . If the fee gradient with respect to 𝑝 is zero,

all liquidity distributions maximize the game’s fees. Otherwise, the game’s fees are maximized, either when all

liquidity is in Pool𝑁 (𝑝 = 1) or when all liquidity is in Pool𝑊 (𝑝 = 0).

Lemma 5.5. The total transaction fees 𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 𝑝) collected across both pools for a traders with relative benefit
𝛼 are proportional to 𝑝 .

Proof. We consider four intervals in the following:

0 < 𝛼 ≤ 𝑓

(1 − 𝑓) ,
𝑓

(1 − 𝑓) < 𝛼 <
𝑓 + 𝑠 − 𝑠 · 𝑓
(1 − 𝑓) (1 − 𝑠) , 𝛼 >

𝑓 + 𝑠 − 𝑠 · 𝑓
(1 − 𝑓) (1 − 𝑠) , and𝑈

𝐴 ≤ 0, 𝛼 >
𝑓 + 𝑠 − 𝑠 · 𝑓
(1 − 𝑓) (1 − 𝑠) and𝑈𝐴 ≥ 0,

where𝑈𝐴 (𝛿𝑥,𝑊 , 𝑓 , 𝑠, 𝑝, 𝑥,𝑦) is the sandwich attacks’ profitability (cf. Definition 4.1).

Following from Lemma 5.4, we conclude that there are no trades executed in either pool and, thereby, no fees

collected in either pool for 𝛼 ≤ 𝑓

(1−𝑓) .

12 • Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer

We continue with the second interval, e.g.,
𝑓

(1−𝑓) < 𝛼 ≤ 𝑓 +𝑠−𝑠 ·𝑓
(1−𝑓) (1−𝑠) . Following from Lemma 5.4 traders

exclusively execute trades in Pool𝑁 on this interval. The fees collected in Pool𝑁 for a transaction by a trader

with relative benefit 𝛼 are

𝐹𝑁 (𝑓 , 𝛼, 𝑠,𝑦, 𝑝) =𝑓
(
𝛿
opt

𝑥,𝑁
· 𝑦
𝑥
+

𝑝 · 𝑦 (1 − 𝑓)𝛿opt
𝑥,𝑁

𝑝 · 𝑥 + (1 − 𝑓)𝛿opt
𝑥,𝑁

)
=𝑝 · 𝑦 · 𝑓

(
1 + 1

1 + (
√︁
(1 + 𝛼) (1 − 𝑓) − 1) (1 − 𝑓)

)
(
√︁
(1 + 𝛼) (1 − 𝑓) − 1)

𝑌 -tokens. In the previous, 𝛿
opt

𝑥,𝑁
· 𝑦

𝑥
is the trader’s transaction size in 𝑌 -tokens in Pool𝑁 and

𝑝 ·𝑦𝛿opt
𝑥,𝑁

𝑝 ·𝑥+(1−𝑓)𝛿opt
𝑥,𝑁

is the

size of the price arbitrageur’s transaction.

In the third interval, e.g., 𝛼 >
𝑓 +𝑠−𝑠 ·𝑓

(1−𝑓) (1−𝑠) and 𝑈
𝐴 ≤ 0, traders execute trades in both pools (cf. Lemma 5.4).

However, there is no profitable sandwich attack, due to the small trade size in Pool𝑊 (cf. Lemma 5.2). The fees

collected in Pool𝑁 are again given by 𝐹𝑁 (𝑓 , 𝛼, 𝑠,𝑦, 𝑝), but liquidity providers collect additional fees in Pool𝑊 . The

fees collected in Pool𝑊 for a transaction by a trader with relative benefit 𝛼 are given by

𝐹𝑈
𝐴≤0

𝑊
(𝑓 , 𝛼, 𝑠,𝑦, 𝑝) = 𝑓

(
𝛿
opt

𝑥,𝑊
· 𝑦
𝑥
+

(1 − 𝑝)𝑦 (1 − 𝑓)𝛿opt
𝑥,𝑊

(1 − 𝑝)𝑥 + (1 − 𝑓)𝛿opt
𝑥,𝑊

)
= (1 − 𝑝)𝑦 · 𝑓

(
1 + 1

1 + (
√︁
(1 + 𝛼) (1 − 𝑓) (1 − 𝑠) − 1) (1 − 𝑓)

)
(
√︁
(1 + 𝛼) (1 − 𝑓) (1 − 𝑠) − 1)

where

𝛿
opt

𝑥,𝑊
· 𝑦
𝑥

is the trader’s transaction size in 𝑌 -tokens in Pool𝑊 and

𝑝 · 𝑦 · 𝛿opt
𝑥,𝑊

𝑝 · 𝑥 + (1 − 𝑓)𝛿opt
𝑥,𝑊

is the size of the price arbitrageur’s transaction that returns the pools to its initial state.

Finally, we analyze the fourth interval, e.g., 𝛼 >
𝑓 +𝑠−𝑠 ·𝑓

(1−𝑓) (1−𝑠) and𝑈
𝐴 > 0. In this interval trades execute in both

pools and sandwich attacks execute in Pool𝑊 . Thus, in addition to the fees 𝐹𝑁 (𝑓 , 𝛼, 𝑠,𝑦, 𝑝) collected in Pool𝑁 , we

also consider the fees collected in Pool𝑊 from traders, price arbitrageurs and sandwich attackers for the liquidity

provider utility. In the presence of sandwich attacks, the fees in Pool𝑊 are given by

𝐹𝑈
𝐴>0

𝑊 (𝑓 , 𝛼, 𝑠,𝑦, 𝑝) =
©«
(
𝛿
opt

𝑥,𝑊
+ 𝑎𝑠𝑥

) 𝑦
𝑥
+

(1 − 𝑝)𝑦 (1 − 𝑓)
(
𝛿
opt

𝑥,𝑊
+ 𝑎𝑠𝑥

)
(1 − 𝑝)𝑥 + (1 − 𝑓)

(
𝛿
opt

𝑥,𝑊
+ 𝑎𝑠𝑥

) ª®®¬
=

(1 − 𝑝)𝑦 · 𝑓
2(1 − 𝑓)

√
1 − 𝑠

(
4(1 − 𝑠)

𝑛2 (𝑓 , 𝛼, 𝑠) + (1 − 𝑓)𝑛1 (𝑓 , 𝛼, 𝑠)
√
1 − 𝑠

− 𝑛2 (𝑓 , 𝛼, 𝑠) + (1 − 𝑓)𝑛1 (𝑓 , 𝛼, 𝑠)
√
1 − 𝑠

)
where

(
𝛿
opt

𝑥,𝑊
+ 𝑎𝑠𝑥

)
𝑦

𝑥
combines the trader’s transaction size in Pool𝑊 and the bot’s front-running transaction size

in 𝑌 -tokens (cf. Lemma 5.3). In the previous,

𝑛1 (𝑓 , 𝛼, 𝑠) =
√︁
(1 + 𝛼) (1 − 𝑠) (1 − 𝑓) − 1

The Potential of Self-Regulation for Front-Running Prevention on DEXes • 13

and

𝑛2 (𝑓 , 𝛼, 𝑠) =
√︃
4 + 4(1 − 𝑓)𝑛1 (𝑓 , 𝛼, 𝑠) + (1 − 𝑓)2𝑛2

1
(𝑓 , 𝛼, 𝑠) (1 − 𝑠).

Further,

(1 − 𝑝)𝑦 (1 − 𝑓)
(
𝛿
opt

𝑥,𝑊
+ 𝑎𝑠𝑥

)(
(1 − 𝑝)𝑥 + (1 − 𝑓)

(
𝛿
opt

𝑥,𝑊
+ 𝑎𝑠𝑥

))
is the combined size of the attacker’s back-running transaction and the transaction that returns the pool to its

initial state. Through a combination, we obtain that the fees collected across both pools are given by

𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 𝑝) =

0 0 < 𝛼 ≤ 𝑓

(1−𝑓)
𝐹𝑁 (𝑓 , 𝛼, 𝑠,𝑦, 𝑝) 𝑓

(1−𝑓) < 𝛼 ≤ 𝑓 +𝑠−𝑠 ·𝑓
(1−𝑓) (1−𝑠)

𝐹𝑁 (𝑓 , 𝛼, 𝑠,𝑦, 𝑝) + 𝐹𝑈
𝐴≤0

𝑊
(𝑓 , 𝛼, 𝑠,𝑦, 𝑝) 𝛼 ≥ 𝑓 +𝑠−𝑠 ·𝑓

(1−𝑓) (1−𝑠) and𝑈
𝐴 ≤ 0

𝐹𝑁 (𝑓 , 𝛼, 𝑠,𝑦, 𝑝) + 𝐹𝑈
𝐴>0

𝑊
(𝑓 , 𝛼, 𝑠,𝑦, 𝑝) 𝛼 ≥ 𝑓 +𝑠−𝑠 ·𝑓

(1−𝑓) (1−𝑠) and𝑈
𝐴 > 0

Thus, we can conclude that that 𝐹 is proportional to 𝑝 for every 𝛼 > 0. □

Note that Lemma 5.5 not only holds for a trade order from a single trader with relative benefit 𝛼 and the

associated trade orders from sandwich attackers and arbitrageurs. It holds for an infinite sequence of trade orders

with the same 𝛼 along with the associated orders from sandwich attackers and arbitrageurs. The previous follows

from price arbitrageurs returning the pool to its initial price 𝑃𝑋→𝑌 after every trade sequence. We conclude that

the total fees collected for a continuous stream of trade orders originating from a homogeneous set of traders

with the same relative benefit 𝛼 is proportional to 𝑝 .

Lemma 5.5 gives the system’s total fees 𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 𝑝). By virtue of the proportionality of the total fees 𝐹 in

both 𝑝 and 𝑦, the fees received by an individual liquidity provider 𝐿𝑃𝑖 with liquidity (𝑞𝑖𝑙𝑖𝐿, (1 − 𝑞𝑖)𝑙𝑖𝐿) are given
by 𝐹𝑖 (𝑓 , 𝛼, 𝑠,𝑦, 𝑞𝑖 , 𝑙𝑖) = 𝑙𝑖 · 𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 𝑞𝑖). Therefore, the optimal liquidity distribution for an individual liquidity

provider also has all liquidity in Pool𝑁 (𝑞𝑖 = 1) or all liquidity in Pool𝑊 (𝑞𝑖 = 0), whenever the gradient of the fee

with respect to 𝑞𝑖 is non-zero. A liquidity provider will redistribute their liquidity optimally, i.e., such that their

utility is maximized, whenever they can increase their received fees by more than a factor of 1 + Y.

6 Game Equilibria

Before discussing the quantitative model, we will give an intuitive explanation. First, we note that liquidity

providers profit from large trading volumes, irrespective of their origin. As the sandwich attackers extract their

profits from the traders, ordinary traders will reduce their trading volume if the attacks become too lucrative.

Therefore, whether a pool with sandwich attacks is the equilibrium boils down to whether the increased trading

volume the attackers generate can offset the diminished trading activity of regular traders. The regime where the

equilibrium lies in the pool with attackers is, thus, characterized by large sandwich attacks but with a very small

resulting profit for the attackers.

We will now substantiate this qualitative picture by locating the game’s Y-equilibria to identify which pool

is favored by the market actors. A liquidity distribution is an Y-equilibria if no liquidity provider can increase

their utility by more than a factor of 1 + Y by adjusting the liquidity distribution. For Y = 0, any Y-equilibrium is

considered a Nash equilibrium. We analyze the game’s equilibria assuming a fixed (mean) benefit for the traders,

𝛼 , in Section 6.1 and discuss the heterogeneous case in Section 6.2.

14 • Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer

Fig. 3. The Nash equilibrium dependent on the slippage tolerance and the relative benefit. Almost everywhere, i.e., in blue
areas, the Nash equilibrium is Pool𝑁 , and the game’s Nash equilibrium is the social optimum. Only on the red area, the
Nash equilibrium is Pool𝑊 . We note that the vertical cross-section of the red area is less than 0.01Δ𝛼 . We set 𝑥 = 5

′
000

′
000

𝑋 , 𝑦 = 5
′
000

′
000 𝑌 and 𝑓 = 0.003.

6.1 Homogeneous Traders

We start by analyzing the game’s equilibria given a homogeneous trader set, i.e., all traders have the same relative

benefit 𝛼 . In the simplest case, 𝜕𝑝𝐹 = 0, all liquidity distributions are both Y-equilibria and Nash equilibria (cf.

Lemma 6.1).

Lemma 6.1. The only Nash equilibria if 𝜕𝑝𝐹 ≠ 0 are 𝑝 ∈ {0, 1}. If 𝜕𝑝𝐹 = 0, all liquidity distributions are Y-equilibria
in a homogeneous traders game.

Proof. If the fees gradient is non-zero (𝜕𝑝𝐹 ≠ 0), the maxima is located at either corner point of the interval,

as fees are proportional to 𝑝 (cf. Lemma 5.5), and the fees gradient is non-zero, the maxima is located at either

corner point of the interval. Else, if the fees gradient 𝜕𝑝𝐹 is zero, the fees across the entire interval are constant.

Therefore, all liquidity distributions are Y-equilibria. □

In Lemma 6.1 we further show that for 𝜕𝑝𝐹 ≠ 0 the only possible Nash equilibria are the two corner cases: all

liquidity in Pool𝑁 (𝑝 = 1) or in Pool𝑊 (𝑝 = 0). This follows from the proportionality of the fees to 𝑝 which means

that the sign of 𝜕𝑝𝐹 dictates the location of the Nash equilibrium. In Figure 3, we visualize the dependence of this

equilibrium on the slippage tolerance and relative benefit.

We notice that in areas where either the trader’s relative benefit 𝛼 or the slippage tolerance is high, Pool𝑁

is the Nash equilibrium. When 𝛼 is comparatively large, so is the traders’ transaction size. Liquidity providers,

therefore, receive a substantial amount of fees from ordinary traders and sandwich attacks would decrease the

pool’s trading volume more than the volume created by the attacker. Thus, all liquidity is in Pool𝑁 . The same

holds when the slippage tolerance is high compared to the trader’s benefit. Trades no longer execute in Pool𝑊

(cf. Lemma 5.4) or their size in Pool𝑊 is too small for there to be a profitable sandwich attack (cf. Lemma 5.2).

Thus, there is basically no volume in Pool𝑊 .

There is a small area in between where Pool𝑊 is the equilibrium. Here, the slippage tolerance is just small

enough not to exceed the bound given in Lemma 5.4 and the trader’s transaction size in Pool𝑊 is just large

enough to allow for a profitable attack (cf. Lemma 5.2). Here, liquidity providers’ private incentives are maximized

in the presence of sandwich attackers.

While the sign of the gradient 𝜕𝑝𝐹 dictates the location of the Nash equilibrium, it is not sufficient to determine

if it is an Y-equilibrium. As we show in Theorem 6.2, it is the relative difference between the fees the liquidity

The Potential of Self-Regulation for Front-Running Prevention on DEXes • 15

provider earns with their current distribution and the maximum fees they can collect that dictate whether the

liquidity provider will change strategy.

Theorem 6.2. A liquidity distribution is an Y-equilibrium if there is no liquidity provider with initial liquidity
distribution (𝑞𝑖𝑙𝑖𝐿, (1 − 𝑞𝑖)𝑙𝑖𝐿), such that

max{𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 0), 𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 1)} − 𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 𝑞𝑖)
𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 𝑞𝑖)

< Y.

Proof. For a liquidity distribution to qualify as an Y-equilibrium, no liquidity provider must see a possibility

to increase their expected fees by more than than a factor 1 + Y through adjusting their liquidity distribution.

Further, we know from Lemma 6.1 that a liquidity provider receives the most fees either when all their liquidity

is in Pool𝑁 or all their liquidity is in Pool𝑊 . Thus, the maximum relative increase to an LP’s fees, with current

liquidity distribution (𝑞𝑖𝑙𝑖𝐿, (1 − 𝑞𝑖)𝑙𝑖𝐿), is given as

max{𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 0), 𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 1)} − 𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 𝑞𝑖)
𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 𝑞𝑖)

.

In case the previous fraction does not exceed Y for any liquidity provider, the current distribution is a Nash

equilibrium. □

Currently, all liquidity is in markets that allow for sandwich attacks. Therefore, we are especially interested in

identifying market configurations that are Y-equilibria for all initial liquidity distributions, as in this situation,

a new market with a front-running protection mechanism would not attract any liquidity even if it were to

maximize the liquidity provider’s private incentives. The maximum relative change in fees for a given market

configuration is given as |Δ𝐹 |, where Δ𝐹 = 𝜕𝑝𝐹/𝐹min and 𝐹min = min (𝐹 (𝑝 = 0), 𝐹 (𝑝 = 1)). Independent of a
liquidity provider’s initial distribution, the relative benefit of switching strategy cannot exceed Y in case |Δ𝐹 | < Y.

The sign of Δ𝐹 corresponds to the sign of the fee’s gradient 𝜕𝑝𝐹 and therefore indicates the position of the Nash

equilibrium.

We simulate the dependence of Δ𝐹 on the slippage tolerance and relative benefit in Figure 4. For comparatively

large slippage tolerances, the magnitude of Δ𝐹 is large. Independent of the liquidity in Pool𝑊 , the trading volume

is either zero when 𝛼 < 𝛼min

𝑊
or relatively small when sandwich attacks are not profitable, i.e.,𝑈𝐴 < 0. Therefore,

switching strategies by moving liquidity from Pool𝑊 to Pool𝑁 leads to a sizable increase in fees in this part of

the parameter space, and we do not expect any Y-equilibria in Pool𝑊 for this parameter range.

Turning to more realistic areas of the parameter space (𝑈𝐴 > 0), we notice that Δ𝐹 ’s magnitude is small. The

dark blue line in Figure 4 shows where Δ𝐹 = 0.01, indicating that all initial liquidity distributions are Y-equilibria

for Y = 0.01 below this line for 𝑈𝐴 > 0. Thus, all liquidity providers who only change strategies for a relative

benefit larger than 1% would not be inclined to move their liquidity. We follow that any liquidity distribution is an

Y-equilibrium for a significant proportion of the parameter space even for small Y. Therefore, liquidity providers

are largely indifferent to whether the market utilizes a front-running protection mechanism and might require

additional financial incentives to migrate their liquidity to pools with front-running protection mechanisms.

In Appendix A, we further simulate and discuss a liquidity provider’s maximal utility increase obtained by

shifting from their initial liquidity distribution to the optimum and quantify the minimum Y such that they move

their reserves.

6.2 Heterogeneous Traders

In this section, we show where the Y-equilibria fall in a game with heterogeneous traders. We model a trader’s

relative benefit 𝛼 as a random variable 𝐴 with probability mass function𝜓𝐴 (𝛼). The game is in an Y-equilibrium

for any probability mass function𝜓𝐴 (𝛼) that fulfills the condition provided in Theorem 6.3. Theorem 6.3 assumes

that the random variable 𝐴 is discrete. Note, however, that it could be adapted to the continuous case.

16 • Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer

Fig. 4. Simulation of Δ𝐹 across both pools depending on the trader’s relative benefit and the slippage tolerance. In blue areas
the Nash equilibrium is Pool𝑁 , in red areas it is Pool𝑊 . Δ𝐹 is cut off at 0.02 for better visibility. Below the dotted cyan line no
trading takes place in Pool𝑊 , and below the dotted magenta line sandwich attacks are not profitable. We set 𝑥 = 5

′
000

′
000

𝑋 , 𝑦 = 5
′
000

′
000 𝑌 and 𝑓 = 0.003.

Theorem 6.3. A liquidity distribution in a system with heterogeneous traders with distribution 𝜓𝐴 (𝛼) is an
Y-equilibrium if there is no liquidity provider with initial liquidity distribution (𝑞𝑖𝑙𝑖𝐿, (1 − 𝑞𝑖)𝑙𝑖𝐿), such that

max {∑𝛼 𝜓𝐴 (𝛼)𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 0),
∑

𝛼 𝜓𝐴 (𝛼)𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 1)} −
∑

𝛼 𝜓𝐴 (𝛼)𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 𝑞𝑖)∑
𝛼 𝜓𝐴 (𝛼)𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 𝑞𝑖)

< Y.

Proof. We proceed similarly to Theorem 6.2 and note that as long as no liquidity provider must see a possibility

to increase their expected fees by more than than a factor 1 + Y through adjusting their liquidity distribution, the

configuration is a Nash equilibrium. The fees received by a liquidity provider 𝐿𝑃𝑖 are given by∑︁
𝛼

𝜓𝐴 (𝛼)𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 𝑞𝑖) ,

where 𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 𝑞𝑖) is given by Lemma 5.5. We, thus, follow that the fees received by liquidity provider 𝐿𝑃𝑖
are also proportional to 𝑞𝑖 in the heterogeneous case. Further, it holds that liquidity provider receives the most

fees either when all their liquidity is in Pool𝑁 , all their liquidity is in Pool𝑊 or the fees are constant for all

liquidity distribution. Thus, the maximum relative increase to an LP’s fees, with current liquidity distribution

(𝑞𝑖𝑙𝑖𝐿, (1 − 𝑞𝑖)𝑙𝑖𝐿), is given as

max {∑𝛼 𝜓𝐴 (𝛼)𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 0),
∑

𝛼 𝜓𝐴 (𝛼)𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 1)} −
∑

𝛼 𝜓𝐴 (𝛼)𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 𝑞𝑖)∑
𝛼 𝜓𝐴 (𝛼)𝐹 (𝑓 , 𝛼, 𝑠,𝑦, 𝑞𝑖)

< Y.

In case the previous fraction does not exceed Y for any liquidity provider, the current distribution is a Nash

equilibrium. □

Further, we predict that for most probability distributions, extreme values of the system’s fees gradient 𝜕𝑝𝐹

will be averaged out. We, therefore, presume that Pool𝑊 will present a Nash equilibrium for even fewer market

configurations and that a large proportion of the game’s parameter space is an Y-equilibrium for small Y’s. To back

up this assumption, we simulate the Δ𝐹 for a two-point distribution with the following probability mass function:

𝜓𝐴 (𝛼) =
{
1

2
if 𝛼 = 𝛼−

𝑘
=

(
1 − 1

𝑘

)
`𝛼 ,

1

2
if 𝛼 = 𝛼+

𝑘
=

(
1 + 1

𝑘

)
`𝛼 ,

The Potential of Self-Regulation for Front-Running Prevention on DEXes • 17

(a) We set 𝑘 = 10. (b) We set 𝑘 = 3.

Fig. 5. Visualization of Δ𝐹 across both pools for a heterogeneous trader distribution 𝜓𝐴 (𝛼) depending on mean relative
benefit and the slippage tolerance. In blue areas the Nash equilibrium is Pool𝑁 , in red areas it is Pool𝑊 , and in the white area
in-between all liquidity distributions are Nash equilibria. Δ𝐹 is cut off at 0.02 for better visibility and the dotted dark blue
line visualizes where Δ𝐹 = 0.01. Where relevant we show the boundaries profitability boundaries for traders and sandwich
attackers. The dotted cyan line indicates where 𝛼−

𝑘
= 𝛼min

𝑊
, i.e, no trading of traders with the respective relative benefit takes

place in Pool𝑊 below the line. The dotted magenta line shows where𝑈𝐴 (𝛼+
𝑘
) = 0 and the dotted purple line shows where

𝑈𝐴 (𝛼−
𝑘
) = 0, i.e, sandwich attacks are not profitable on trades with the respective 𝛼 below these lines. We set 𝑥 = 5

′
000

′
000

𝑋 , 𝑦 = 5
′
000

′
000 𝑌 and 𝑓 = 0.003.

in Figure 5 for 𝑘 = 10 (cf. Figure 5a) and 𝑘 = 3 (cf. Figure 5b). As expected Δ𝐹 resembles the homogeneous case

more closely, when the two points of the distribution are close to each other, i.e., for the higher values of 𝑘 . Note

that for 𝑘 = ∞ the two-point distribution becomes a one-point distribution, i.e., the homogeneous case.

We further notice that a more significant area of the parameter space has Pool𝑁 as the Nash equilibrium when

the slippage tolerance is large, i.e., for 𝑈𝐴 (𝛼−
𝑘
) < 0. Half the traders have a lower relative benefit than `𝛼 and,

thereby, these traders will only execute transactions in Pool𝑊 for smaller slippage tolerances. We further note

that the area of the parameter space, where Pool𝑊 is the Nash equilibrium grows smaller as 𝑘 decreases. While

there remains a small area of the parameter space that has Pool𝑊 as the Nash equilibrium for for 𝑘 = 10 (cf.

Figure 5a), this completely disappears for 𝑘 = 3 (cf. Figure 5b). The particular combination of requirements that

must be met for Pool𝑊 to be the Nash equilibrium is never achieved as the distance between the two points of

the distribution grows. However, while we expect that for most heterogeneous games Pool𝑊 will never be a Nash

equilibrium, it remains an Y-equilibria even for small Y whenever the mean relative benefit `𝛼 is comparatively

large, i.e., for𝑈𝐴 (𝛼−
𝑘
) > 0.

7 Social Incentives and Self-Regulation

In our model, whenever the derivative of the liquidity provider’s utility is positive, i.e., 𝜕𝑝𝑈
𝐿𝑃 = 𝜕𝑝𝐹 > 0,

the system’s Nash equilibrium maximizes social welfare. Our analysis demonstrates that Pool𝑁 is the Nash

equilibrium for the vast majority of the parameter space (cf. Figure 3). Only in a small area, Pool𝑊 is the Nash

equilibrium. We, thus, conclude that for Y = 0, social welfare is maximized in most market configurations.

Therefore, markets preventing front-running generally align the private incentives of liquidity providers with

the system’s incentives.

However, liquidity providers are currently in markets without front-running protections. Thus, an innovative

DEX preventing front-running attacks must attract liquidity from other markets. Our analysis highlights that even

though placing all liquidity in Pool𝑁 maximizes the private incentives of liquidity providers for the majority of

market configurations, the benefit from adjusting a liquidity distribution is often only small. The market, therefore,

18 • Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer

cannot rely on the inert liquidity providers to revise their liquidity distribution. Therefore, added incentives may

be required for the successful adoption of a such market. A new DEX, implementing a front-running prevention

scheme, could, for example, distribute its native token to liquidity providers as an added incentive. Similar benefits

have been distributed at the launch of new DeFi platforms [11].

8 Conclusion

Our game-theoretical study of the incentives of traders and liquidity providers to adopt a DEX with a new market

design preventing front-running attacks shows that generally, the private incentives of both traders and liquidity

providers align the market’s social incentives — eliminating front-running attacks. In the absence of a central

authority, market participants must experience a personal benefit for the successful adoption of such a design.

Therefore, this alignment of the liquidity provider’s private incentives and the market’s social incentives is

promising.

However, our analysis also finds that generally, the increase in the liquidity provider’s utility from moving to a

market preventing front-running is small. Liquidity providers are usually not nimble market participants, and,

therefore, the prospect of a small utility increase might not suffice. Successful self-regulation of the market to

prevent front-running attacks is likely to require additional initial financial incentives to gain the attention of

liquidity providers.

References

[1] Automata network. https://www.ata.network/ (2023)

[2] Cowswap. https://cowswap.exchange/ (2023)

[3] Curve. https://curve.fi/ (2023)

[4] Dexs volume. https://defillama.com/dexs (2023)

[5] Eden. https://www.edennetwork.io/ (2023)

[6] flashbots. https://docs.flashbots.net/ (2023)

[7] Gnosis protocol. https://gnosis.io/ (2023)

[8] Openmev. https://openmev.xyz/ (2023)

[9] Sandwich overview. https://eigenphi.io/mev/ethereum/sandwich (2023)

[10] Secretswap. https://secretswap.net/ (2023)

[11] Sushiswap. https://sushi.com/ (2023)

[12] Uniswap. https://uniswap.org/ (2023)

[13] Adams, H., Zinsmeister, N., Robinson, D.: Uniswap v2 core (2020)

[14] Adams, H., Zinsmeister, N., Salem, M., Keefer, R., Robinson, D.: Uniswap v3 core. Tech. rep., Uniswap (2021)

[15] Asayag, A., Cohen, G., Grayevsky, I., Leshkowitz, M., Rottenstreich, O., Tamari, R., Yakira, D.: A fair consensus proto-

col for transaction ordering. In: 2018 IEEE 26th International Conference on Network Protocols (ICNP). pp. 55–65 (2018).

https://doi.org/10.1109/ICNP.2018.00016

[16] Baird, L.: The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01,

Tech. Rep (2016)

[17] Bentov, I., Ji, Y., Zhang, F., Breidenbach, L., Daian, P., Juels, A.: Tesseract: Real-time cryptocurrency exchange using trusted hardware. In:

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. p. 1521–1538. CCS ’19, Association for

Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3319535.3363221, https://doi.org/10.1145/3319535.3363221

[18] Bernhardt, D., Taub, B.: Front-running dynamics. Journal of Economic Theory 138(1), 288–296 (2008)
[19] Breidenbach, L., Daian, P., Tramèr, F., Juels, A.: Enter the hydra: Towards principled bug bounties and exploit-resistant smart contracts.

In: 27th {USENIX} Security Symposium ({USENIX} Security 18). pp. 1335–1352 (2018)

[20] Budish, E., Lee, R.S., Shim, J.J.: A Theory of Stock Exchange Competition and Innovation: Will the Market Fix the Market? NBER

Working Papers 25855, National Bureau of Economic Research, Inc (2019)

[21] Cachin, C., Mićić, J., Steinhauer, N.: Quick order fairness. In: Financial Cryptography and Data Security (FC), Grenada (2022)

[22] Comerton-Forde, C., Tang, K.M.: Anonymity, frontrunning and market integrity. The Journal of Trading 2(4), 101–118 (2007)
[23] Constantinescu, A., Ghinea, D., Heimbach, L., Wang, Z., Wattenhofer, R.: A fair and resilient decentralized clock network for transaction

ordering. arXiv preprint arXiv:2305.05206 (2023)

https://www.ata.network/
https://cowswap.exchange/
https://curve.fi/
https://defillama.com/dexs
https://www.edennetwork.io/
https://docs.flashbots.net/
https://gnosis.io/
https://openmev.xyz/
https://eigenphi.io/mev/ethereum/sandwich
https://secretswap.net/
https://sushi.com/
https://uniswap.org/
https://doi.org/10.1145/3319535.3363221

The Potential of Self-Regulation for Front-Running Prevention on DEXes • 19

[24] Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L., Juels, A.: Flash boys 2.0: Frontrunning in decentralized

exchanges, miner extractable value, and consensus instability. In: 2020 IEEE Symposium on Security and Privacy (SP). pp. 910–927. IEEE

(2020)

[25] Danthine, J.P., Moresi, S.: Front-Running by Mutual Fund Managers: A Mixed Bag. Review of Finance 2(1), 29–56 (1998)
[26] Doweck, Y., Eyal, I.: Multi-party timed commitments. arXiv preprint arXiv:2005.04883 (2020)

[27] Eskandari, S., Moosavi, M., Clark, J.: Sok: Transparent dishonesty: front-running attacks on blockchain. In: Financial Cryptography and

Data Security (FC), St. Kitts, Saint Kitts and Nevis (February 2019)

[28] Heimbach, L., Wattenhofer, R.: Eliminating sandwich attacks with the help of game theory (2022)

[29] Heimbach, L., Wattenhofer, R.: SoK: Preventing Transaction Reordering Manipulations in Decentralized Finance. In: 4th ACMConference

on Advances in Financial Technologies (AFT), Cambridge, Massachusetts, USA (September 2022)

[30] Kelkar, M., Deb, S., Kannan, S.: Order-fair consensus in the permissionless setting. IACR Cryptol. ePrint Arch. 2021, 139 (2021)
[31] Kelkar, M., Deb, S., Long, S., Juels, A., Kannan, S.: Themis: Fast, strong order-fairness in byzantine consensus. Cryptology ePrint Archive,

Report 2021/1465 (2021), https://ia.cr/2021/1465

[32] Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine consensus. In: Annual International Cryptology Conference.

pp. 451–480. Springer (2020)

[33] Kursawe, K.: Wendy, the good little fairness widget: Achieving order fairness for blockchains. In: Proceedings of the 2nd ACMConference

on Advances in Financial Technologies. pp. 25–36 (2020)

[34] Manahov, V.: Front-running scalping strategies and market manipulation: Why does high-frequency trading need stricter regulation?

Financial Review 51(3), 363–402 (2016)
[35] Markham, J.W.: Front-running - insider trading under the commodity exchange act. Catholic University Law Review 38, 69 (1988-1989)
[36] Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of bft protocols. p. 31–42. CCS ’16, Association for Computing

Machinery, New York, NY, USA (2016)

[37] Momeni, P., Gorbunov, S., Zhang, B.: Fairblock: Preventing blockchain front-running with minimal overheads. In: Security and Privacy

in Communication Networks: 18th EAI International Conference, SecureComm 2022, Virtual Event, October 2022, Proceedings. pp.

250–271. Springer (2023)

[38] Moosa, I.: The regulation of high-frequency trading: A pragmatic view. Journal of Banking Regulation 16(1), 72–88 (2015)
[39] Orda, A., Rottenstreich, O.: Enforcing fairness in blockchain transaction ordering. Peer-to-peer Networking and Applications 14(6),

3660–3673 (2021)

[40] Park, A.: The conceptual flaws of constant product automated market making (2021), available at SSRN: 3805750

[41] Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: How dark is the forest? In: 2022 IEEE Symposium on Security

and Privacy (SP). pp. 198–214. IEEE (2022)

[42] Reiter, M.K., Birman, K.P.: How to securely replicate services. ACM Transactions on Programming Languages and Systems (TOPLAS)

16(3), 986–1009 (1994)
[43] Stathakopoulou, C., Rüsch, S., Brandenburger, M., Vukolić, M.: Adding fairness to order: Preventing front-running attacks in bft protocols

using tees. In: 2021 40th International Symposium on Reliable Distributed Systems (SRDS). pp. 34–45. IEEE (2021)

[44] Tatabitovska, A., Ersoy, O., Erkin, Z.: Mitigation of transaction manipulation attacks in uniswap (2021)

[45] Wang, Y., Züst, P., Yao, Y., Lu, Z., Wattenhofer, R.: Impact and User Perception of Sandwich Attacks in the DeFi Ecosystem. In: ACM

CHI Conference on Human Factors in Computing Systems (CHI), New Orleans, LA, USA (May 2022)

[46] Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger (2014)

[47] Zhang, H., Merino, L.H., Estrada-Galinanes, V., Ford, B.: Flash freezing flash boys: Countering blockchain front-running. In: 2022 IEEE

42nd International Conference on Distributed Computing Systems Workshops (ICDCSW). pp. 90–95. IEEE (2022)

[48] Zhang, Y., Setty, S., Chen, Q., Zhou, L., Alvisi, L.: Byzantine ordered consensus without byzantine oligarchy. In: 14th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 20). pp. 633–649 (2020)

[49] Zhou, L., Qin, K., Gervais, A.: A2mm: Mitigating frontrunning, transaction reordering and consensus instability in decentralized

exchanges (2021)

[50] Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading on decentralized on-chain exchanges (2020)

https://ia.cr/2021/1465

20 • Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer

A Maximal Utility Increase

We quantify a liquidity provider’s minimum Y such that they move their reserves given an initial distribution

of liquidity in this section. In Figure 6 we visualize for which Y a liquidity provider 𝐿𝑃𝑖 with a proportion 𝑞𝑖 of

their liquidity in Pool𝑁 does not change strategy depending on the traders’ relative benefit (cf. Figure 6a) and the

slippage tolerance (cf. Figure 6b). In case Y > 𝐼 , where 𝐼 denotes the liquidity provider’s maximal relative utility

increase for a strategy change, a liquidity provider does not adjust their distribution. Thus, the smaller 𝐼 , the

higher the likelihood for the current configuration to be an Y-equilibrium.

(a) Liquidity provider’s maximal utility increase dependent
on their current liquidity distribution and the traders’ relative
benefit. We set 𝑠 = 0.05.

(b) Liquidity provider’s maximal utility increase dependent on
their current liquidity distribution and the slippage tolerance.
We set 𝛼 = 0.2.

Fig. 6. A liquidity provider’s maximal utility increase 𝐼 . Configurations where 𝐼 < Y are Y-equilibria resulting in the liquidity
provider staying put. We set 𝑥 = 5000000 𝑋 , 𝑦 = 5000000 𝑌 and 𝑓 = 0.003.

We first notice that the further a distribution is from a Nash equilibrium, the higher the maximal utility increase.

For example, we see that for a high relative benefit, Figure 6a, the maximal utility increase 𝐼 is highest when 𝑞𝑖 is

small, and thereby far from the Nash equilibrium. We observe the same pattern in Figure 6b. A liquidity provider

with a near-optimal liquidity distribution, thus, has little to gain from changing strategy. While this is intuitive, it

is also promising as liquidity providers have higher incentives to migrate to the Nash equilibrium whenever their

liquidity distribution varies largely from the equilibrium liquidity distribution.

Additionally, we observe that in areas where the slippage tolerance is low or trading is less profitable for

traders due to high slippage tolerances (cf. Lemma 5.4), a liquidity provider’s maximal utility gain is small (cf.

Figure 6b). The possibility for only a small increase in a liquidity provider’s utility from adjusting their liquidity

position when the slippage is low stems from both pools being similar for very low slippages. Thus, the received

fees are similar in both pools. When the slippage is close to the bound provided by Lemma 5.4, it is also close to

the intermediary Nash equilibrium, i.e., 𝜕𝑝𝐹 = 0 (cf. Figure 4). Therefore, the difference in the fees received in

either pool is small.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Automated Market Maker
	3.2 Sandwich Attacks

	4 Model
	4.1 Sandwich Attackers
	4.2 Price Arbitrageurs
	4.3 Traders
	4.4 Liquidity Providers

	5 Strategies
	5.1 Sandwich Attack Profitability
	5.2 Trade Sizes
	5.3 Liquidity Distribution

	6 Game Equilibria
	6.1 Homogeneous Traders
	6.2 Heterogeneous Traders

	7 Social Incentives and Self-Regulation
	8 Conclusion
	References
	A Maximal Utility Increase

