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Abstract

Network games are commonly used to capture the strategic interactions among interconnected
agents in simultaneous moves. The agents’ actions in a Nash equilibrium must take into account
the mutual dependencies connecting them, which is typically obtained by solving a set of fixed
point equations. Stackelberg games, on the other hand, model the sequential moves between
agents that are categorized as leaders and followers. The corresponding solution concept, the
subgame perfect equilibrium, is typically obtained using backward induction. Both game forms
enjoy very wide use in the (cyber)security literature, the network game often as a template
to study security investment and externality – also referred to as the Interdependent Security
(IDS) games – and the Stackelberg game as a formalism to model a variety of attacker-defender
scenarios.

In this study we examine a model that combines both types of strategic reasoning: the
interdependency as well as sequential moves. Specifically, we consider a scenario with a network
of interconnected first movers (firms or defenders, whose security efforts and practices collectively
determine the security posture of the eco-system) and one or more second movers, the attacker(s),
who determine how much effort to exert on attacking the many potential targets. This gives
rise to an equilibrium concept that embodies both types of equilibria mentioned above. We will
examine how its existence and uniqueness conditions differ from that for a standard network
game. Of particular interest are comparisons between the two game forms in terms of effort
exerted by the defender(s) and the attacker(s), respectively, and the free-riding behavior among
the defenders.

1 Introduction

Network games are commonly used to capture the strategic interactions among interconnected agents.
As a special type of strategic game, network games highlight the critical role physical or logical
connectivity can play in determining the outcome of social, technological, and economic interactions,
see e.g., [7, 14, 15, 20, 22, 25, 26]; this is seen in many real-world scenarios such as trade, exchange
and spread of information, and the marketing and adoption of technology, to name a few. This
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framework is widely used in the context of local provision of public goods, see e.g., [6, 9, 22]. One of
the primary goals of this line of research has been to identify how properties of the connectivity,
i.e., the underlying interaction graph that represents mutual dependencies and influences among the
agents, impact the equilibrium outcomes of such games in terms of their analysis, computation, as
well as the conditions under which an equilibrium solution exists, is unique and/or is stable. Network
games are almost always studied as a strategic, simultaneous-move game, with the notion of Nash
equilibrium (NE) used to study their outcomes.

In the security context, public good provision games are often utilized as a framework to model
strategic defense decisions; examples include airline security [19] and cybersecurity [11, 13, 21, 22,
29], where network games have often been referred to as interdependent security (IDS) games. These
models are used to study the provision of, or investment in, security and defense mechanisms by a
set of interconnected and interdependent entities (representing companies, agencies, organizations).
Typically the impact of security investment or effort in such a model is captured through the agents’
utility function, which is an increasing function of effort (or more precisely, some type of total
weighted effort to reflect its dependency on other agents’ effort); an adverse event or the existence
of an attacker or adversary is not explicitly modeled, with the exception of the seminal work by
Bracken and McGill [4, 5] (and studies that followed) on the two-stage modeling of the defense-assault
application. Bracken and McGill also pioneered the rich field of bilevel programming, which has
found broad applicability in adversarial security games.

In this paper, we are interested in understanding more explicitly the interaction between
interconnected defenders and similarly interconnected attackers. The differentiation between the
defenders and the attackers not only lies in the dependence relationship (e.g., a defender may
benefit from a fellow defender’s effort, but will suffer harm from an attacker’s effort), but also in the
sequentiality of their actions; that is, a (targeted) attack often takes into account some knowledge of
the state of the defender. In practical terms, this assumption is supported by the observation that
cyber criminals, in order to accomplish their attack goals, often conduct pre-attack exploration of
vulnerable systems, employing techniques such as device finger-printing, port scanning [1, 12], social
engineering [8], and similar methods.

Toward this end, we propose a Stackelberg game played among a set of interconnecting agents
that include both defenders and attackers. The defenders are simultaneous first movers and the
attackers are simultaneous second movers best responding to the defenders. The defenders’ actions
are both in anticipation of the attackers’ best response and in anticipation of the impact from other
defenders’ actions through the interaction graph. This leads to the investigation of a special type of
Subgame Perfect Equilibrium (SPE) as the solution concept, and is obtained through the backward
induction which now involves solving a set of fixed point equations in both stages of the induction
(by the defenders and the attackers).

It’s worth noting that Stackelberg games as a formalism also enjoys very wide use in the
cybersecurity literature. While the network game (or IDS game) is often used to study security
investment and externality, the Stackelberg game has been used to model a variety of attacker-
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defender scenarios, see e.g., [4, 16]. To the best of our knowledge, this study is the first attempt at
overlaying a Stackelberg game on top of a network game. Our main findings are as follows.

1. We first show that for a special class of interior SPE, the leaders’ first stage game in the
sequential-move network game is equivalent to a simultaneous-move network game played by
the leaders on the Schur complement [32] of the interdependency (sub)matrix of the attackers
in the full interdependency matrix (Theorem 4.1). We refer to this as the reduced network
game, and use its properties to gain insights into leaders’ behavior in the SPE of the sequential
network game.

2. We then study a sequential network game with multiple defenders and a single attacker, and
contrast the sequential-move game (i.e., defenders move first and the attacker moves second)
with a simultaneous-move game (i.e., all players choose actions simultaneously). We first
identify conditions under which the sequential nature of the game induces lower free-riding
behavior and lower investment by the defenders (Propositions 5.1 and 5.2). This happens when
the interdependency network of the defenders is a “rank-1” network (defined in Section 5.1)
or if the influence of the attacker is significant. We show that the magnitude of this decrease
aligns with the alpha-centrality of defenders in the reduced network (Proposition 5.3).

3. We further identify instances under which the opposite happens, i.e., when sequentiality leads
some defenders to increase their investment, which may in turn lead the attacker to also
increase its attack effort. Specifically, we illustrate a situation where severe free-riders (those
substantially “supported” by other defenders’ investments in the simultaneous-move game)
are “exposed”, with a diminished ability to free-ride in the sequential setting (Section 5.2).
Intuitively, such defenders invest more in the SPE than the corresponding NE due to losing
support from other defenders who invest less in the sequential-move game. We then show that
as a result of this increase in effort by exposed free-riders, the attacker may best-respond by
increasing its attack effort (Section 5.4).

The remainder of the paper is organized as follows. We review the literature most closely
related to this work in Section 2. We present the network-Stackelberg game model in Section 3,
followed by its equilibrium analysis in Section 4. We then contrast sequential vs. simultaneous-move
multi-defender single-attacker games in Section 5. We discuss the limitations of our model and
directions of future works in Section 6, and conclude the paper in Section 7.

2 Related Works

Sequential-move games, or Stackelberg games, have been widely studied in the economics literature.
The most closely related to this work are those that have studied Stackelberg public good provision
or network games, exploring the benefits to the leaders and/or contrasting the outcomes with those
of simultaneous-move games. Sherali [27] studied a sequential game in the oligopoly market with
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identical firms who differ only in the sequence of participation. Sherali observed that leaders always
make higher profit than followers, and each leader’s profit is maximized when it is the only leader
of the game. These results shed light on the leaders’ sequential exploitation of the followers, but
focus only on competitive relationship between agents. Varian [30] constructed a quasilinear model
on 2-agent sequential public-good games and examined subsidy mechanisms that can yield Lindahl
allocations. Varian concluded that without mechanisms, the provision of public good and the sum of
utilities would be less than those in the simultaneous counterpart. However, opposite results are
observed in several papers in experimental economics on sequential step-level public good games,
such as Erev and Rapoport [10] and Normann [23]. Both experiments show that sequential step-level
games actually improve public-good provision, even though second movers often punish first-movers
for insufficient investment. The reason for the improvement, as suggested by Normann [23], is the
role model effect: when the first mover tends to invest more in the public good, it serves as a role
model for the second mover, who in turn would invest more. These different observations on the
impact of sequential setting on the provision of public goods are to an extent due to the difference of
the models, where [30] considers continuous and quasilinear utilities, while those in [10] and [23]
are discrete. Additionally, these models only account for positive externalities between players and
do not adequately incorporate a combination of positive and negative externalities, which can be
effectively modeled through the framework of network games [7, 20, 22, 25]. To our knowledge, our
work is the first to analyze network game played in sequential order, and contrast them with their
simultaneous-move counterparts.

3 Model Description

We consider a public good provision game on network G played in a sequence of two sets of moves,
the first by a set of leaders L and the second by a set of followers F . Each player or agent i

chooses an action xi ∈ R+ denoting its level of investment/effort in the public good. All players are
interconnected by the game matrix G, the (i, j)th entry of which denotes the dependence of player
i’s utility on player j’s action. Thus, it is sometimes called a dependence matrix and conversely, GT

is sometimes called an influence matrix. Accordingly, whenever there is an edge pointing from i to j,
we say player i depends on player j, or player j influences player i. Without loss of generality, we
assume all diagonals of G are 1, i.e., gii = 1, ∀i. The matrix G is equivalent to a directed graph with
edge weights representing both the connectivity among agents and the strengths of their connections.
In graph theory terminology, the matrix G− I is the adjacency matrix of the network with I being
the identity matrix.

Since the agents separate into leaders and followers, it makes sense to divide the matrix G in
blocks as follows:

G =

[
A B

C D

]
, (1)

where A and D represent the dependency within each player set L and F , respectively, while B and
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C represent the (cross-)dependency between player sets L and F . For the most part, we will use
notations like aij and bij so as to make it clear the types of agents the edge weight is connecting;
occasionally we will use gij to refer to a generic element in the full matrix.

Let xl be the action profile (a column vector) of all leaders and xf be the action profile of all
followers. Denote by x := (xT

l ,x
T
f )

T the joint action profile of all players. In this two-stage setting,
the leaders can be viewed as solving an equilibrium problem in a standard network game played
on the network A, anticipating the followers’ reaction to their own choices, i.e., xf (xl), while the
followers can be seen as solving an equilibrium problem in another standard network game played on
D but with xl as fixed parameters. More precisely, we adopt the following players’ utility functions:

ui(xi,x−i|G) = fi

xi +
∑

j∈L∪F\{i}

gijxj

− βixi, ∀i ∈ L ∪ F , (2)

where fi(·) is the benefit function of player i and βi > 0 is player i’s unit cost of effort or investment.
We will assume fi(·) is continuously differentiable, strictly increasing, and strictly concave for all i.
We also assume that f ′

i(·) is a convex function. This type of utility is also commonly known as the
total weighted effort model in the literature of public good games, see e.g., Grossklags et al. [11] and
Varian [29], where the argument of the utility function fi(

∑
j gijxj) is called the total weighted effort

received by player i.

Before proceeding, we introduce the following assumption to make our problem more tractable.
Assumption 3.1. For every player i ∈ L ∪ F , f ′

i(−∞) = ∞ and f ′
i(∞) = 0. That is, there always

exists qi ∈ R such that f ′
i(qi) = βi. We will denote ql := (qi)i∈L and qf := (qi)i∈F , and assume

ql, qf ≥ 0 for simplicity.

Assumption 3.1 states that every player would be satisfied once its received total weighted effort
reaches qi. Since qi equalizes i’s marginal benefit and marginal cost, any additional investment
yielding a total weighted effort higher than qi is strictly less preferred by player i. Thus, we say qi is
the saturation point of player i.

A few comments are in order. First, in this model each agent has a scalar action, interchangeably
termed the effort or investment. If we view agents in F as attackers and those in L as defenders,
then this scalar action should be interpreted as a generic, non-targeted effort: common broad-based
security mechanisms for a defender (such as firewalls, intrusion detection systems, etc.), and for an
attacker, investment in attack technology which is then applied to all defenders. How susceptible
a specific defender is to a specific attacker (the edge weights hard-coded in the game parameters)
encapsulates factors not explicitly modeled; e.g., an entity with a large number of employees may be
particularly susceptible to an attacker specializing in phishing, but less so to an attacker specializing
in exploiting unpatched system vulnerabilities.

Secondly, there are two sets of terminologies frequently used in such a network setting that
deserve some clarification, as we will repeatedly use these later on: positive vs. negative externality,
and whether one’s effort acts as a strategic complement or strategic substitute to that of another. In
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general, an action by a player is said to carry positive externality if the same, self-serving action
also benefits others that depend on it. In the context of a game defined on a graph, this is often
associated with a positive edge weight on an incoming edge to the player taking the action, where an
increase in effort by this player benefits its neighbor who depends on this player; this is clearly seen in
the total weighted effort model given above. Conversely, negative externality is typically associated
with a negative edge weight. Whether the effort being provisioned is a substitute or complement has
to do with whether the increase in a player’s effort would lead a dependent neighboring player to
decrease or increase its own effort, substitute in the former and complement in the latter. This, too,
is closely associated with the signs of the edge weights: often a positive edge weight means substitute
and negative means complement. However, the interpretation of both sets of concepts and their
association with the edge weights ultimately depends on the utility function one adopts. Suffice to
say that the total weighted effort model presented above does allow us to associate positive (resp.
negative) edge weights with both positive (resp. negative) externality and actions being strategic
substitutes (resp. complements) as described above.

Figure 1 depicts the relationship between these concepts and the saturation point in a 2-player
example, where a single edge points from player 1 to player 2 with an edge weight of e. This is
shown through the best response (BR) of player 1 to player 2’s action x2, which is taken as given in
this example. In total weighted effort models with linear costs, this best response function is linear
and given by BR1(x2) = max{0, q1 − ex2}. This is shown in two cases: when e > 0 (the red curve)

Figure 1: Relationship between saturation point and strategic substitute/complement.

and when e < 0 (the blue curve). Specifically, when e > 0, the amount that 1 has to invest to reach
its saturation point is reduced by |e|x2, the share in player 1’s total weighted effort that comes from
player 2. Therefore, player 1 would always select an effort level less than q1, free-riding on player 2.
In the extreme case, when x2 ≥ q1

|e| (the flat segment of the red curve), then player 1’s total weighted
effort has already reached its saturation point q1 and hence has no incentive to take any positive
action. This is a case of player 2’s action x2 substituting for 1’s own action. In the opposite case,
when e < 0, any positive x2 lowers player 1’s total weighted effort, forcing it to invest an additional
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|e|x2 to compensate for this loss, resulting in a x1 higher than q1, forming a strategic complement
relationship.

In the context of cybersecurity, the total weighted effort model captures the fact that one player’s
security investment generally contributes to another, connected player’s security posture. Sometimes
this contribution is positive, e.g., a more secure service provider enhances the security of a customer
that depends on its service. Other times this can be negative, e.g., strong defense by one player
could induce threats to be directed at other players. In our analysis, we will generally take the view
that security investment has positive externality among defenders, whereas attack investment carries
negative externality for defenders.

Our goal with the two-stage network game model laid out in Eq. (2) is to understand how the
resulting equilibrium compares to that of a typical, simultaneous-move public good game, to which
our model is a natural extension. In a standard total weighted effort game, the Nash equilibrium is
obtained by finding the fixed point of all agents’ linear best response functions. It is worth noting
that this step is much more complicated in the proposed sequential network game. This is because
the best response mappings for the leaders are no longer linear, which will be discussed at length in
Section 4.

4 Equilibrium Analysis

The problem outlined in the previous section is a two-stage dynamic (Stackelberg) game with perfect
information, where the standard solution concept is the sub-game perfect equilibrium (SPE). An
action profile x∗ is a sub-game perfect equilibrium if every sub-game with x∗ constrained to that
sub-game forms a Nash equilibrium (NE). Sub-game perfect equilibrium in Stackelberg games are
commonly solved using backward induction. We will limit our attention to an (easier) sub-class of
sub-game perfect equilibrium and utilize the backward-induction technique to resolve it.

Given any fixed leaders’ profile xl, the followers’ game becomes a standard (simultaneous-move)
network game. Naghizadeh and Liu [22] showed that due to strict concavity of utility functions
in the second stage, x∗

f (xl) is a Nash equilibrium among the followers if and only if the following
system of equations hold simultaneously

x∗i (xl) = max

0, qi −
∑
j∈L

cijxj −
∑
i′∈F
i′ ̸=i

dii′x
∗
i′(xl)

 , ∀i ∈ F . (3)

Notice Eq. (3) might not be the same for every leaders’ action profile xl. Thus, we shall call x∗
f (xl)

the followers’ equilibrium reaction function to xl. [22] provides a necessary and sufficient condition
for the existence and uniqueness of the solution to Eq. (3); we state this as an assumption below,
which allows us to have a unique followers’ equilibrium response, leading to a well defined sub-game
perfect equilibrium introduced shortly.
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Assumption 4.1. The matrix D is a P-matrix.

Assumption 4.1 ensures that the followers’ equilibrium response is unique for any xl. Without
this assumption, if the followers have multiple equilibrium responses, without a clearly defined tie
breaking rule a leader would not know which response to in turn respond to and which response
the other leaders would respond to. To avoid this complication, we will adopt Assumption 4.1 as a
global assumption throughout the paper.

Following the technique of backward induction, we substitute Eq. (3) into the leaders’ utility
functions in Eq. (2) and obtain a simultaneous-move game among the leaders, which we refer to as
the reduced game formally defined below.
Definition 4.1. The reduced game is the simultaneous-move game among the leaders, obtained after
one step of backward induction, i.e., replacing the terms {xj : j ∈ F} in their utility functions (2)
with the followers’ equilibrium reaction functions {x∗j (xl) : j ∈ F}.

By the standard definition, any Nash equilibrium of the reduced game is a sub-game perfect
equilibrium. However, the fact that the followers can choose boundary actions, i.e., xj = 0 for some
j ∈ F , complicates the application of standard theorems on the existence and computation of Nash
equilibrium. In the following paragraphs, we briefly explain this difficulty and introduce a more
restrictive equilibrium concept to sidestep this problem.

We begin by noting that the max operator in Eq. (3) makes this function non-differentiable, which
leads to a fundamental difficulty in our model. When each leader i performs backward-induction
by plugging in the followers’ reaction function, its utility function (2) can be non-differentiable and
non-concave with respect to its own investment xi, both of which are important assumptions for
most theorems on existence and uniqueness of Nash equilibrium, such as fixed-point theorems and
variational inequalities. These results rely on the first-order condition reformulation of every player’s
optimization problem, which no longer holds when the utility functions are non-concave. Moreover,
non-concavity also obstructs the construction of sub-differentials which are commonly used in solving
non-smooth Nash equilibrium problems. We illustrate this difficulty through the example below.

Example 4.1. Assume L := {1} and F := {2} with q2 = 11 and G =

[
1 a

a 1

]
for some a ∈

(0, 1). Also assume f1(·) = log(·). Thus, the follower’s equilibrium response function is x∗2(x1) =

max{0, 1 − ax1}. Using backward induction to derive the first-stage utility we obtain u1(x1|G) =

log (x1 + amax{0, 1− ax1})− β1x1. This is clearly non-differentiable at x1 = 1/a. Since u1 is at
least continuous, we can assume it is right-differentiable and calculate its right-derivative, denoted by
u+1 , as

u+1 (x1|G) =
1− a21{x1≤1/a}

x1 + amax{0, 1− ax1}
− β1. (4)

1We have started directly from q2, skipping the formulation of f2(·) and β2. The subsequent analysis holds for any
f2(·) and β2 that lead to q2 = 1.
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u1 is concave if and only if u+1 is weakly decreasing. However, if we take arbitrarily small ε > 0, then

u+1 ((1 + ε)/a|G) + β1

u+1 ((1− ε)/a|G) + β1
=

a/(1 + ε)

a(1− a2)/[1− ε(1− a2)]
=

(1− a2)−1 − ε

1 + ε
> 1, (5)

which implies u+1 ((1 + ε)/a|G) > u+1 ((1− ε)/a|G). Thus, u1 is not concave at the non-differentiable
point x1 = 1/a. In fact, when the leader chooses x1 = 1/a, the follower’s reaction becomes a boundary
solution, i.e., x∗2(1/a) = 0. In that case, the leader’s utility function is concave and differentiable
within the regions [0, 1/a] and (1/a,∞) instead of on the entire domain. We will show that this
issue can make the leader’s best-response mapping non-convex, which hinders the application of, say,
Kakutani’s fixed-point theorem.

Let a ∈ (1/
√
2,
√
1− e−1) and β1 = 1−a2

a log
(

1
1−a2

)
. We apply the first-order (necessary)

condition to the leader’s problem and obtain two local solutions: x11 = 1
β1

and x21 = 1
β1

− a
1−a2

. It
can be verified that x11 ∈ (1/a,∞) and x21 ∈ [0, 1/a]. When the leader chooses x11, the follower is
inactive with x∗2(x

1
1) = 0, but when the leader chooses x21, the follower will respond with x∗2(x

2
1) =

1
1−a2

(
1 + a2

log(1−a2)

)
> 0. Nevertheless, in both cases the leader obtains the same utility since

u1(x
2
1|G) = log

(
1− a2

β1

)
− 1 +

aβ1
1− a2

= log

(
1

β1

)
− 1 = u1(x

1
1|G). (6)

Thus, the solution set to the leader’s optimization problem consists of two distinct points x11, x
2
1. If

this situation occurs for some player in a multi-leader game, then we cannot apply, e.g., Kakutani’s
fixed-point theorem, to identify a Nash equilibrium since its best-response function does not necessarily
map to a convex set.

In light of the difficulty discussed above, we will focus on a sub-class of sub-game perfect
equilibrium where all players choose interior actions, to which we refer as an interior sub-game
perfect equilibrium defined below.
Definition 4.2. An action profile x∗ is called an interior sub-game perfect equilibrium (I-SPE) if it
is sub-game perfect with ∂ui

∂xi
(x∗|G) = 0 for every i ∈ L ∪ F .

For reference, an interior Nash equilibrium for a standard multi-player simultaneous-move game
with utility functions given by ui(x) for every player i is defined as follows.
Definition 4.3. An action profile x∗ is called an interior Nash equilibrium (I-NE) if it is a Nash
equilibrium and ∂ui

∂xi
(x∗) = 0 for every player i.

Note that, in Definition 4.2, we require the sub-game perfectness since the vanishing first-order
condition is not equivalent to global optimality of each leader’s best response. To establish the
existence and uniqueness of I-SPE, we need to rule out cases where some followers exert zero effort
(also called inactive). Below we introduce a sufficient condition for the existence and uniqueness of
an I-SPE.

First define G/D := A−BD−1C as the Schur complement [32] of the block D in G. For each
i ∈ L, if (G/D)ii > 0, then define q̃i such that f ′

i(q̃i) =
βi

(G/D)ii
. This is the saturation point of leader
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i in the reduced game. If every q̃i exists, we stack them into a column vector q̃l := (q̃i)i∈L and will
call this the reduced saturation point : it is the saturation point of the reduced game, and as we will
see later it is also smaller in quantity.

Theorem 4.1. Let G be a P-matrix with C ≤ 0 and D being a Z-matrix, i.e., dij ≤ 0 for all i ̸= j.
Then, q̃l is well defined and there exists a unique SPE. Also, this SPE is also an I-SPE given by

x∗ = G−1

[
q̃l

qf

]
, if G−1

[
q̃l

qf

]
≥ 0.

Proof. Step 1. We first show that all followers are going to play interior actions. It is known
that matrices that are both Z-matrices and P-matrices are nonsingular M-matrices [28]. This,
together with Assumption 4.1, imply that D is a non-singular M-matrix. Furthermore, the inverse
of a non-singular M-matrix is a non-negative matrix [28]. Therefore, due to the positivity of qf
(Assumption 3.1) and −C, we know x∗

f (xl) = D−1(qf −Cxl) is the unique solution to the system (3)
for every xl ≥ 0. It can be verified that this is always an interior solution, i.e., ∂ui

∂xi
(xl,x

∗
f (xl)|G) = 0

for every i ∈ F and xl ≥ 0 .

Step 2. Next we verify the existence and uniqueness of a Nash equilibrium in the reduced game.
Knowing the followers always play interior actions, the leaders’ utility function in the reduced game
can be expressed in closed-form as

ũi(xl|G) := ui(xl,x
∗
f (xl)|G) = fi

([
(G/D)xl +BD−1qf

]
i

)
− βixi, ∀i ∈ L. (7)

Since G is a P-matrix, G/D is also a P-matrix [28]. Thus, (G/D)ii > 0 for all i ∈ L since they
are the 1 × 1 principal minors of G/D, and hence q̃l is well-defined. Furthermore, by replacing
fi(·) with f̃i(·) := fi(· − ti) where ti = [BD−1qf ]i, one can recover a standard simultaneous-move
network game played over the network G/D. Since G/D is a P-matrix, this game has a unique Nash
equilibrium.

Step 3. Finally, we show that this SPE is interior. The Nash equilibrium of the reduced game is
equivalent to the solution of the following best-response relationship:

xi =
1

(G/D)ii
max

0, q̃i − [BD−1qf ]i −
∑
i′∈L
i′ ̸=i

(G/D)ii′xi′

 , ∀i ∈ L. (8)

By the matrix inversion lemma, we have

G−1

[
q̃l

qf

]
=

[
(G/D)−1 −(G/D)−1BD−1

−D−1C(G/D)−1 D−1 +D−1C(G/D)−1BD−1

][
q̃l

qf

]

=

[
(G/D)−1(q̃l −BD−1qf )

D−1
[
qf − C(G/D)−1(q̃l −BD−1qf )

]] =:

[
v1

v2

]
.

(9)

By the stated conditions, v1,v2 are both non-negative. One can easily verify that v1 is the solution
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to Eq. (8). Thus, it is the unique Nash equilibrium of the reduced game. Furthermore, v2 is exactly
the equilibrium reaction of the followers to the leaders’ action profile v1. Thus, (vT

1 ,v
T
2 )

T constitutes
the unique SPE. Besides, since ∂ui

∂xi
(vi|G) = 0 for i ∈ L and ∂uj

∂xj
(v2) = 0 for j ∈ F , it is also the

unique I-SPE of this game.

Theorem 4.1 reveals an interesting connection between the sequential-move game and the
simultaneous-move game on a network. When the followers are known to play interior actions, the
leaders’ reduced game is equivalent to a simultaneous-move game with game matrix G/D (the Schur
complement of D in G). With a slight abuse of terminology, we will also refer to the latter as the
reduced game and G/D as the reduced game matrix for the rest of the paper. Note the dimensionality
reduction in the game matrix from the original game, i.e., dim(G/D) = dim(A) < dim(G).

5 Networked Security: A Multi-Defender Single-Attacker Game

We now turn our attention to applying this sequential network game framework to the application
of networked security (investment). To do so, we will view the leaders as simultaneous defenders,
who set their defense strategies xl beforehand and in anticipation of attacks, and view the followers
as simultaneous attackers who choose optimal attack efforts xf in response. In addition, we will
assume that the edge weights between any defender and any attacker are negative in both directions,
if they exist and that the conditions in Theorem 4.1 are satisfied. Formally,
Assumption 5.1. The following conditions hold:

• B and C are non-positive matrices,

• D is a Z-matrix,

• G is a P-matrix,

• G−1

[
q̃l

qf

]
≥ 0.

A direct consequence of Assumption 5.1 is the decrease in the defenders’ saturation points. We
illustrate this in Figure 2 and provide a formal proof in the following lemma.
Lemma 5.1. q̃l ≤ ql.

Proof. According to the proof of Theorem 4.1, D−1 is a non-negative matrix. Thus, the matrix
BD−1C is also non-negative. Then, (G/D)ii = 1 − [BD−1C]ii ≤ 1. Thus, for every i ∈ L,

βi

(G/D)ii
≥ βi. At the same time, the concavity of fi implies that f ′

i(·) is decreasing. This combined
with the definition f ′

i(qi) = βi and f ′
i(q̃i) =

βi

(G/D)ii
means q̃i ≤ qi.

We now take an in-depth look at this game in the special case of a single attacker. The network

matrix in this case can be written as G =

[
A b

cT 1

]
, where b and c are non-positive column vectors.

Then, by Theorem 4.1, the simultaneous-move game between the defenders, obtained after one step
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Figure 2: The drop in the saturation point in the sequential setting.

of backward induction, can be viewed as the reduced game over the reduced game matrix A− bcT

(the Schur complement of D in G with D = 1). Under Assumption 5.1, the edge weights in this
Schur complement are less than A. Thus, we immediately see a strategic complement effect induced
by the presence of the follower/attacker. Interestingly, if some edges are positive in the original
game but become negative in the reduced game, then it means that the presence of the attacker has
turned strategic substitutes into strategic complements, or in other words, allies into adversaries.

In the remainder of this section, we investigate how the sequentiality affects players’ equilibrium
actions and free-riding behaviors under different network topologies, including the strategic comple-
ment effect mentioned above. Specifically, Subsection 5.1 examines general conditions under which
the defenders’ free-riding and equilibrium efforts are reduced. Subsection 5.2 shows an opposite
instance where sequentiality exposes free-riders by inducing them to invest more. Then, Subsection
5.3 studies the connection between equilibrium effort changes and the alpha-centrality of defenders
in the network. Finally, Subsection 5.4 examines the impact of the free-riding behavior among
defenders on the attacker’s equilibrium response.

We begin by calculating the unique I-SPE of the sequential game using Theorem 4.1, which is
given by

xSPE
l = (A− bcT )−1(q̃l − qfb) , (10)

xSPE
f =

(
1 + cT (A− bcT )−1b

)
qf − cT (A− bcT )−1q̃l. (11)

Suppose, on the other hand, that all players (all the defenders and the attacker) play simultaneously

with the same set of game parameters and that G−1

[
ql

qf

]
≥ 0. Then, there exists a unique Nash

equilibrium, which is also interior, given by Eqs. (10) and (11), with q̃l replaced by ql. We will
denote these respectively as xNE

l and xNE
f .
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5.1 The Interplay Between Sequentiality and Dependence

In this section, we examine how the presence of a strategic second-stage attacker affects the free-riding
patterns among defenders. Denote by xSPE

l (A) (resp. xNE
l (A)) the I-SPE (resp. I-NE) given the

defenders’ game matrix A. Define the vector of free-riding scores under both I-SPE and I-NE,
respectively, as

sSPE = xSPE
l (I)− xSPE

l (A), (12)

sNE = xNE
l (I)− xNE

l (A), (13)

where I denotes the identity matrix. The ith entry of s represents the decrease in investment of
defender i in the interconnected network game, compared to that of an independent (non-networked)
game. Therefore, the higher the value of si, the higher the degree of free-riding of defender i.

Let Assumption 5.1 hold for A replaced by I. Then, in light of Eq. (10), these score vectors can
be expressed as

sSPE =
(
(I − bcT )−1 − (A− bcT )−1

)
(q̃l − qfb), (14)

sNE =
(
(I − bcT )−1 − (A− bcT )−1

)
(ql − qfb). (15)

We are interested in the difference ∆s := sSPE − sNE , i.e., the increment in the degree of
free-riding induced by sequentiality. If the ith entry of ∆s is positive, then the free-riding behavior is
amplified in the sequential version; otherwise, it is reduced. We will only focus on games of strategic
substitutes among the defenders since free-riding behaviors are well-defined in these situations.
Proposition 5.1. If A consists of purely strategic substitutes (i.e., aij ≥ 0, ∀i, j ̸= i) with small
magnitude compared to the attacker’s influence (aij ≤ bicj , ∀i, j ̸= i), then there is less free-riding
for all defenders in the sequential game, i.e., sSPE ≤ sNE. Moreover, all defenders will exert lower
effort in the sequential-move game compared to the simultaneous-move game, i.e., xSPE

l ≤ xNE
l .

Proof. It is sufficient to show that ∆s =
(
(I − bcT )−1 − (A− bcT )−1

)
(q̃l − ql) ≤ 0. Denote

X := I − bcT and Y := A − bcT . Also, let P := X−1 and Q := Y −1. Assumption 5.1 and the
condition above implies X and Y are both non-singular M-matrices. Thus, P,Q ≥ 0 by [28]. Since
q̃l − ql ≤ 0, it is sufficient to show P −Q is a non-negative matrix, or equivalently, pij ≥ qij for all
i, j. Since XP = I, we have

N∑
k=1

xikpki = 1 ∀i, and
N∑
k=1

xikpkj = 0 ∀i ̸= j. (16)

Notice xii = yii for all i and xij ≤ yij for all i ̸= j. Thus,

N∑
k=1

yikpki ≥ 1 ∀i, and
N∑
k=1

yikpkj ≥ 0 ∀i ̸= j. (17)
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Now consider entries of the matrix P = QY P :

pij =
N∑
k=1

qik

N∑
l=1

yklplj = qij

N∑
l=1

yjlplj +
∑
k ̸=j

qik

N∑
l=1

yklqlj ≥ qij , ∀i, j. (18)

Therefore, P − Q ≥ 0 and thus ∆s = (P − Q)(q̃l − ql) ≤ 0. The last statement follows from
Q(q̃l − ql) ≤ 0.

Proposition 5.1 indicates that the sequential nature of the game might induce lower investment
by the defenders when they are able to exploit the follower to their own advantage, even though
they are unable to free-ride on each other at the same time. The former is a common yet important
observation in most sequential economic games, such as [27, 30], where the leaders’ advantage arises
as they no longer face the “threat of strategic uncertainty” posed by the followers. Consider, for
instance, the single-defender and single-attacker case, whereby the defender’s utility in an SPE is
no lower than that in an NE as the former comes from a larger set that includes the latter. This
tendency to decrease efforts is also consistent with the change in the defenders’ saturation point, i.e.,
q̃l ≤ ql (Lemma 5.1). However, reasoning about this advantage in the general case is complicated by
the presence of multiple defenders, because we now have to deal with the factor of free-riding which
could lead to effort increase in the sequential game. To see this, consider one free-riding defender -
the supported - who depends on the effort of another defender - the supporter. If the supporter’s
sequential effort drops according to the decrease in its saturation point, the supported receives less
external efforts and now has to invest more by itself to compensate for it. Therefore, whether the
equilibrium effort of any defender decreases depends on the balance between these two factors. The
conditions in Proposition 5.1 limit the defenders’ reliance on free-riding (on other defenders), so
that the effect of lower saturation point dominates, leading to lower effort by all defenders in the
sequential setting.

Furthermore, Proposition 5.1 shows an interesting phenomenon where the strategic substitute
network with small dependencies induces lower investments in sequential games but also less free-
riding. In fact, the reduced game consists of no positive dependencies, namely free-riding, at all!
This is because the strategic complement effect turns off-diagonal values of the Schur complement
of D in G from non-negative to non-positive. This is exactly the “turning-allies-into-adversaries”
situation mentioned at the beginning of this section.

When substitute dependencies are large, there exist networks with special topologies that can
similarly reduce free-riding scores for all defenders. We refer to these as “rank-1” networks, literally
meaning that the adjacency matrix of such a network is of rank 1. Consider a strategic substitute
network with its adjacency matrix given by A := uvT where u,v ≥ 0. Then, as the diagonals of A
are all zero, we derive the following complementarity condition: either ui = 0 or vi = 0, ∀i. The
interpretation of ui = 0 is the i-th agent depends on no one, while that of vi = 0 is the i-th agent
influences no one. Thus, “rank-1” networks possess the important “transient-node-free” property,
where every node exclusively contains either outgoing or incoming edges, but not both. In other
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words, every node is either a source (node consisting only of outgoing edges) or a sink (node consisting
only of incoming edges), in graph terminology.

The “transient-node-free” networks can be understood as a special case of directed bipartite
graphs depicted in Figure 3a. Specifically, it is a directed graph with its vertex set divided into
two disjoint subsets, each containing either source or sink nodes. In Figure 3a, the bottom nodes
represent sources, while the top nodes represent sinks. Notice that this category includes some
commonly seen topologies such as unidirectional, two-agent topology (Figure 3b) and star topology
(Figure 3c and 3d). This category closely resembles a practical scenario where a group of agents
relies on certain cyber-security services provided by another group of agents.

. . .

. . .

. . .

. . .

(a) Directed bipar-
tite topology.

1 2

(b) Two-
agent
topology.

(c) Central
source and star
topology.

(d) Central
sink and star
topology.

Figure 3: Examples of rank-1 networks.

Formally, the reduction of free-riding in rank-1 networks is shown in the following proposition.
Proposition 5.2. Let the strategic substitute graph among defenders be of rank-1. Then free-riding
is reduced among all defenders in the sequential case.

Proof. As the defenders’ graph has rank 1, by a generalization of Sherman-Morrison formula [2],

∆s =
(
(I − bcT )−1 − (I + xyT − bcT )−1

)
(q̃l − ql)

=
1

1 + yT (I − bcT )−1x
(I − bcT )−1xyT (I − bcT )−1(q̃l − ql).

(19)

Note that x,y ≥ 0, and (I − bcT )−1 is the inverse of a non-singular M-matrix, which is non-negative.
Therefore, we have ∆s ≤ 0.

Proposition 5.2 states that even if the positive externalities among the defenders are non-negligible,
i.e., the reduced network has some positive off-diagonal entries, as long as the defenders’ network
is of rank-1, all free-riding behaviors can be reduced in the sequential game. Consequently, this
finding implies that in practical scenarios where the cyber-security of one group of agents relies on
another (disjoint) group, the sequential version of the game tends to exhibit diminished free-riding
behaviors, regardless of the strength of the dependency. Therefore, systems with such dependency
structures, where the prevention of free-riding may be of major concern, can benefit from this type
of sequentiality.

It is worth noting that a reduction in free-riding does not always coincide with a reduction in
the defenders’ efforts. This is demonstrated in the example discussed in the next subsection, where
the game matrix has rank-1 (and so by Proposition 5.2, free-riding is lower in the sequential game)
but one of the defenders invests more in the sequential game.
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5.2 “Exposed” Free-Riders

Subsection 5.1 identifies the combined effect of free-riding and decrease in saturation points on the
defenders’ equilibrium effort, and in particular, conditions under which all defenders invest less
and exhibit less free-riding. We now look at instances of the game where (some) defenders’ efforts
increase as a result of their diminished ability to free-ride on other defenders in a sequential game.
We say the change from simultaneous-move to sequential-move exposes the free-riders; the following
example illustrates this phenomenon.
Example 5.1. In this example, we illustrate a situation where free-riders (those “supported” by other
defenders’ investments in the simultaneous-move game) are exposed by the sequential setting. We
will see that such defenders invest more in the SPE than the corresponding NE due to losing support
from other defenders who invest less in the sequential-move game.

Let there be two defenders and one attacker. Given a ∈ (0, 1) and b ∈ (−1, 0), let the game matrix

be such that A =

[
1 a

0 1

]
, b =

[
0

b

]
, c =

[
b b

]
, and d = 1. The connection given in A indicates

there is a one-way dependence between the two defenders: 1 depends on 2 but not the other way
round. For simplicity, assume G is row diagonally dominant, which trivially implies the P-matrix

property. The Schur complement of D in G for this game is given by G/D =

[
1 a

−b2 1− b2

]
.

Let the benefit function be fi(·) = log(·) for all i = 1, 2, 3. This choice guarantees that qi > 0

for every player i. Then, we have q̃1 = q1, but q̃2 = (1 − b2)q2. The equilibrium efforts of the

defenders for the SPE and NE are given by xSPE
l = det(G/D)−1

[
(1− b2)q1 − a(1− b2)q2

b2q1 + (1− b2)q2

]
and

xNE
l = det(G/D)−1

[
(1− b2)q1 − aq2

b2q1 + q2

]
, respectively. One can immediately check that defender 1

exerts higher effort in the sequential game while defender 2 exerts lower effort. Since defender 2

receives no positive externality, its equilibrium action is consistent with the decrease of its saturation
point. On the other hand, defender 1, who receives positive externality from defender 2’s effort,
experiences a decrease of support from defender 2 in the sequential setting. What’s worse, since
defender 1 receives no negative externality from the attacker (b1 = 0), its saturation point stays
unchanged. Thus, it has to exert more effort in the sequential equilibrium.

5.3 Alpha-Centrality: Whose Effort Will Go Down?

We next present a method for identifying which defenders will tend to lower their investments in the
sequential-move game. Eq. (10) and (11) suggest the following connection between such defenders
and the alpha-centrality measure proposed by Bonacich and Lloyd [3]. Alpha-centrality is a centrality
measure tailored for asymmetric matrices. Given parameters α, v, and a graph with adjacency
matrix G, the alpha-centrality is defined as

cα(G,α,v) = (I − αG)−1v, (20)
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where α characterizes the strength of the transfer of “endogenous” status to vertices due to network
connections with other vertices with high status, while v is interpreted as some “exogenous” status
characteristic that can be different among vertices.
Proposition 5.3. Consider the graph among defenders with the game matrix A−bcT , with diagonals
normalized to 1. Define the vector of exogenous status as ∆ql := ql − q̃l ≥ 0. Then the effort of
defenders with higher alpha-centrality cα(A− bcT ,−1,∆ql) decreases more in the sequential-move
game compared to the simultaneous-move game.

Proof. Subtracting xSPE
l from xNE

l , we obtain (A−bcT )−1∆ql, which is exactly the alpha-centrality
with α = −1 and v = ∆ql.

Note that the phrase “decreases more” only suggests the direction of change in equilibrium efforts;
it does not exclude the possibility that defenders may increase their sequential investments, in which
case the defender would have a negative alpha-centrality. A larger magnitude of such centrality
would then indicate that the defender’s effort increases more than others.

Proposition 5.3 provides several important insights on how defenders can exploit the sequential
nature of the game. First, we note that an alpha-centrality with transfer strength α = −1 induces
an alternating sign effect as the influence of one node propagates along any path in the network [22].
For example, let i0, i1, . . . , ik be a path of length k in the network, with the associated edge weights
being gi0i1 , gi1i2 , . . . , gik−1ik . Then, the effect of ik’s exogenous status on i0’s effort along this path is
given by (−1)k∆qik

∏k
l=1 gil−1il .

2 If the path length is even, the influence of ik on i0 along this path
has the same sign as the product of the edge weights along the path, i.e.,

∏k
l=1 gil−1il ; the effect is

opposite otherwise. This observation suggests two fundamental properties of the network which
characterize the influence between any two, possibly non-neighboring, agents: the product of the
edge weights along the path connecting the agents, as well as the length of the path. The influence
of one agent on the other is, therefore, the combined effect of all paths from the former to the latter;
the exhibited investment reduction for every agent can be viewed as a combined effect of (besides
the exogenous status ∆ql) such influence of all other agents.

Those defenders who increase their investments receive negative alpha-centrality. Therefore,
according to Subsection 5.2, these defenders are also free-riders in the simultaneous-move game.

Moreover, due to the convexity of f ′
i(·), we have qi − q̃i = (f ′

i)
−1(βi) − (f ′

i)
−1

(
βi

(G/D)ii

)
≥

[(f ′
i)

−1]′
(

βi

(G/D)ii

)
βi

(
1− 1

(G/D)ii

)
= βi

f ′′
i (q̃i)

(
1− 1

(G/D)ii

)
. Thus, the curvature of the benefit func-

tion plays a role in each defender’s exogenous centrality. The defenders with benefit functions of softer
slopes (those that flatten-out more slowly) would receive a higher exogenous status characteristic,
which might increase their alpha-centrality. This is because those defenders’ saturation points are
relatively farther away from zero compared to others. Thus, they can afford larger magnitude of
investment drops whenever exploitation of sequentiality is possible.

2This expression can be intuitively understood by expanding the alpha-centrality (I − αG)−1v into
∑∞

k=0 α
kGkv

when α < λmax(G)−1. We refer interested readers to [3, 22].
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5.4 Exposed Free-Riders Could Lead to Higher Attacker Effort

Note that for all multi-leader and single-follower security games, by comparing Eq. (10) and (11), we
can see that xNE

l − xSPE
l ≥ 0 implies xNE

f − xSPE
f ≥ 0; that is, if all defenders’ efforts drop in the

sequential-move game (as happens, e.g., under the conditions of Proposition 5.1), then the attacker
effort will drop as well. Conversely, this means if there is higher attacker effort in a sequential game
instance, at least one defender must have increased its sequential investment in this game. By our
insights from Subsection 5.2, a defender who increases its effort in a sequential-move game is likely
to have been a free-rider in the simultaneous-move game. The following example elaborates on this
observation about the relationship between the change in the defenders’ free-riding behavior and the
increases in the attacker’s effort.
Example 5.2. In this example, we present two instances of the security game where the attacker’s
sequential action increases in one and decreases in the other, compared to the simultaneous-move
counterparts. We conclude from the example that the attacker will exert higher effort when there is
more severe free-riding among the defenders.

We begin by simplifying the last term in Eq. (11) into
(
1 + cTA−1b

1−cTA−1b

)
(−c)TA−1q̃l using the

Sherman-Morrison formula. Thus, xNE
f − xSPE

f =
(
1 + cTA−1b

1−cTA−1b

)
(−c)TA−1∆ql, where ∆ql is the

same vector of exogenous status in Proposition 5.3. Notice the term 1 + cTA−1b
1−cTA−1b

is always positive,
and therefore the change in the attacker’s effort only depends on the value of (−c)TA−1∆ql.

If the defenders are independent, i.e., A = I, then (−c)TA−1∆ql = (−c)T∆ql ≥ 0. Thus, the
attacker would exert less effort in the sequential game. If, on the contrary, we choose the network

matrix to have one-way dependency, i.e., A =

[
1 a

0 1

]
, the the attacker exerts strictly higher effort in

the sequential-move game if (−c)TA−1∆ql = −c1∆q1 + (−c2 + ac1)∆q2 < 0. This does not hold
if either c1 = 0 or ∆q2 = 0, where the latter is equivalent to b2 = 0 or c2 = 0 since q̃i is defined
by f ′

i(q̃i) =
βi

1−b2c2
and f ′

i(·) is strictly decreasing. Conversely, it requires c < 0 and b2 < 0 for the
attacker to exert strictly higher effort in the sequential game. Moreover, if these conditions hold,
we can rewrite the inequality into a > ∆q1

∆q2
+ c2

c1
. Notice that ∆q1

∆q2
+ c2

c1
is strictly positive. Thus,

only positive dependency among defenders can induce higher attacker effort, and the more positive
this dependency is, the more effort the attacker would exert. Recall that, as we have discussed in
Proposition 5.3, a higher value of a may lead to higher security investment of defender 1; this is the
defender that free-rides on defender 2 in the simultaneous-move game, but is exposed in the sequential
setting. Comparing these two findings, we conclude that the attacker is led to increase its effort in
the sequential setting in response to the increase in effort of the “exposed” free-riding defender 1.

6 Discussions

Our model provides a general framework of analyzing sequential-move network games and allows us
to draw a number of interesting insights especially in a security game context. There are limitations
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to this model, which suggest possible directions of future research.

First of all, under the present model the attacker exerts a single (attack) effort which is felt by all
(connected) defenders, modulo the connection strength. Since the connection strength is taken as a
fixed game parameter, this model does not adequately capture the cases where attacks on individual
defenders are highly targeted, often as a function of the defender’s effort. This would require a
different model. One possibility is to allow the attacker to choose optimal edge weights b and c as
part of its strategic decisions.

Secondly, all our analysis is based on the assumption that an interior SPE exists. This means
that our results do not directly apply to cases where some players may exert zero effort (inactive) or
other boundary actions not captured by interior solutions. The latter is particularly important as all
effort levels must ultimately be bounded due to budget constraints. We conjecture that, as long
as the attacker remains interior, most of our insights should still hold because if we eliminate rows
and columns of G corresponding to inactive defenders, we obtain exactly the same problem with a
smaller graph. The challenge arises when there are inactive attackers, e.g., when the condition on D

in Theorem 4.1 does not hold. In this case, the defenders’ utility functions in the reduced game may
not be concave, as we demonstrated in Example 4.1, and our results in Section 5 may not generalize.

One possible avenue is to formulate these problems as equilibrium problems with equilibrium
constraints (EPEC) [31] and solve them numerically using algorithms for quasi-variational inequality,
see e.g., [18, 24], or iterated best-response dynamics with diagonalization, see e.g. [31]. A more
comprehensive investigation of these methods is a direction of future work.

Last but not least, it is particularly interesting to investigate sequential games with multiple
defenders and multiple attackers. It is proposed that cyber criminals act economically in a dark
market [17], meaning the number of attackers could be unbounded and their behaviors might be
captured by traditional oligopoly models. We are interested in how the knowledge of multiple
attackers may influence the security investment and free-riding behaviors among defenders. The
technical challenge here is significant: under the proposed sequential network game model, the
possibility of positive off-diagonal entries of D violates the conditions in Theorem 4.1, and thus it
may require an alternative model.

7 Conclusion

In this paper we examined a sequential network game model that takes into account interdependency
as well as sequential moves in the agents’ strategy reasoning. Similar to general sequential public
good games, this model encounters difficulties in the non-convexity and non-differentiability of the
leaders’ utility functions in the reduced games. We provided a sufficient condition under which an
interior sub-game perfect equilibrium can be solved analytically.

In applying this model to the cyber-security context with a single attacker and multiple defenders,
we demonstrated that the presence of a second-mover, the strategic attacker, can have strategic
complement effects on the defenders, leading them to invest less in the sequential-move games
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compared to its simultaneous counterpart, particularly when free-riding among defenders are moderate.
However, severe free-riders may have a diminished ability to do so in a sequential game and are
forced to invest more. We also showed that the relative decrease of security investments in the
sequential game compared to that of simultaneous game aligns with the notion of alpha-centrality in
the reduced network.
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