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Abstract 

Open source software (OSS) is critical to digital sovereignty and is required for the modern 
digital economy. Despite being widely used and highly valued, OSS is not free from security 
defects. Recent discoveries of critical vulnerabilities in OSS, such as “Log4Shell” and 
“Heartbleed,” underscore the importance of, and lack of theories about, open source security. 
Drawing on organizational learning theory and viewing OSS from the perspective of software 
supply chains, this study offers a novel theoretical perspective into positive knowledge spillover 
of vulnerability disclosures in the OSS ecosystem. This occurs when an OSS project (that is, a 
supplier) discloses a software vulnerability. The security knowledge will be transferred through 
software supply chains to downstream OSS projects (i.e., consumers), enabling the latter group 
to better identify new vulnerabilities with similar technical weaknesses in their own code 
repositories. We further theorized that the severity of the supplier’s vulnerability moderates 
knowledge spillover, where a critical vulnerability, as compared to a noncritical one, yields a 
much higher spillover that induces interorganizational learning. To validate our theoretical 
predictions, we conducted a comprehensive analysis using data assembled from the National 
Vulnerability Database, Libraries.io, and Google’s open source vulnerabilities database. We 
discovered compelling empirical evidence supporting both the proposed knowledge spillover 
effect and the moderating relationship. Acknowledging the existence of various causal pathways 
that may contribute to the observed knowledge spillovers, we analyzed potential mechanisms 
and showed that our theory (i.e., organizational learning from vulnerability disclosures through 
software supply chains) was a more plausible and salient mechanism relative to the alternatives.  
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“Free and open source software is a vital cog in the economy, much like 
interstate highways, the power grid, or the communications network. Given how 
much we already know about those critical infrastructure systems, doesn’t it only 
make sense to learn just as much about their 21st century equivalent?” (Lifshitz-
Assaf & Nagle, 2021) 

INTRODUCTION 

Open source software (OSS) plays a vital role in the current digital economy. Almost all 

commercial codebases contain open source components (Synopsys, 2022), and most of the core 

software innovations and frameworks in emerging technologies are OSS projects, such as 

TensorFlow for artificial intelligence, Ethereum for blockchains, Kubernetes for cloud 

computing, and Spark for data analytics. Along with their significant presence, recent research 

has shown that OSS can play salient roles in improving productivity and creating value for 

commercial firms (Germonprez et al., 2017; Lin & Maruping, 2022; Nagle, 2019). 

Despite being widely used and highly valued, OSS is not free from security defects 

(Altinkemer et al., 2008; Payne, 2002; Schryen, 2011). The availability of source code to the 

public does not automatically make OSS more secure. Because anyone can freely use OSS and 

can easily incorporate it into other software applications, security issues in OSS are likely more 

contagious and exploitable than their proprietary, closed source counterparts (Ransbotham, 

2010).1 The “Log4Shell” vulnerability in the Apache Log4j library discovered in December 

2021 was an illuminating example. Log4j is a popular open source logging utility for Java 

programs. Any software that uses Log4j can be potentially vulnerable and affected by Log4Shell 

because attackers can execute commands remotely on the target machine to steal data, install 

malware, or take control. The impact of Log4Shell was extensive because there are billions of 

 
1 We acknowledge that some OSS is proprietary or commercial, and some proprietary and commercial software is open-sourced. 
However, for ease of exposition, throughout the paper we consider OSS as noncommercial and nonproprietary, and commercial 
and proprietary software as closed source software. This is consistent with the OSS literature and the typical software use cases in 
practice. We use the phrases “closed-source software,” “proprietary software,” and “commercial software” interchangeably in 
this paper as an alternative group of software artifacts when compared to OSS.  
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devices that run on Java (including computers, phones, ATMs, and home appliances) and 

logging is a universal software activity. In the wake of this discovery, the White House promptly 

convened government agencies and private sector stakeholders to discuss how to prevent security 

defects and vulnerabilities in OSS and improve the process of finding defects and fixing them.2 

Meanwhile, newly passed laws and regulations, such as the CHIPS and Science Act (signed into 

law by President Joe Biden on August 9, 2022) and the Securing Open Source Software Act 

(introduced by the leadership of the Senate Homeland Security and Governmental Affairs 

Committee on September 21, 2022), have included provisions to strengthen open source security 

and software supply chains. Indeed, flaws in OSS can threaten national security. Just as nations 

strive to safeguard their physical infrastructure, there is a growing consensus on the need to 

secure the OSS ecosystem because it is key to digital sovereignty (Berlin Declaration, 2020) and 

underpins much of the digital infrastructure in the modern economy (Eghbal, 2020; Lifshitz-

Assaf & Nagle, 2021). 

In this study we seek to deepen the understanding of open source security, doing so 

through the perspective of software supply chains. Some researchers have already noticed that 

OSS operates in complex supply chains (Germonprez et al., 2017). The aforementioned Log4j 

incident also highlights the fact that OSS packages are intricately interconnected, and as such, 

open source security concerns more than just fixing defects within the scope of individual OSS 

projects. In fact, most OSS projects reuse external open source code and libraries written by 

others to minimize redundant effort. According to a recent study by the Linux Foundation 

(2022), on average, an OSS project imports and reuses 68.8 external open source packages. The 

interconnected relationships among OSS projects naturally engender a unique ecosystem with 

 
2 See https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeting-on-software-
security/ 

https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeting-on-software-security/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeting-on-software-security/
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multilateral dependencies (Jacobides et al., 2018). In this ecosystem, it is fitting to view the 

software dependency relationships between OSS packages as supplier–consumer dyads, in which 

a supplier is defined as a software package that provides functionalities for other downstream 

software packages, whereas a consumer is a software package that utilizes the functionalities 

provided by upstream software packages.3 The role and importance of software supply chains are 

therefore salient characteristics of open source security because security vulnerabilities in an 

OSS artifact have impacts and implications for other downstream OSS artifacts.  

To make progress in understanding how OSS projects manage and respond to security 

vulnerabilities, this paper advances a theory of open source security that goes beyond the 

boundaries of individual OSS projects and considers the influences of their upstream suppliers. 

Viewing OSS from the perspective of software supply chains and drawing on organizational 

learning theory (Mehrizi et al., 2022), we propose, explain, and investigate the spillover of 

security knowledge in vulnerability disclosures through software supply chains in the OSS 

ecosystem: when a supplier discloses a security vulnerability, its downstream consumers will 

apply the security knowledge in the disclosed vulnerability to identify similar vulnerabilities in 

the future. This work is related to prior research on the spread of security vulnerabilities after 

their public disclosures (see, e.g., Mitra & Ransbotham, 2015). However, our research is distinct 

from, and therefore, complementary to, this literature in two key aspects. First, we emphasize the 

diffusion of security knowledge from the OSS supplier to its OSS consumers. This allows us to 

develop a more nuanced understanding of the direction of knowledge diffusion. Second and 

perhaps more importantly, in our setting the supplier’s vulnerability and the consumer’s 

 
3 We are not the first one to use “software supply chains,” “suppliers,” and “consumers” to characterize open source security. 
They have been the standard terminology in prior research (Ferraiuolo et al., 2022), recent cybersecurity policies in the U.S. 
(Executive Office of the President, 2021), as well as industrial initiatives and reports (Synopsys, 2022). We adopt the supply 
chain terminology in accordance with this ongoing discourse.  
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vulnerability were not the same. In other words, we examine the spread of knowledge related to 

security weaknesses in a vulnerability in the open source ecosystem rather than the spread of the 

vulnerability itself.4  

We assembled a unique dataset that combined software vulnerability records and OSS 

project data to test our theory. Results from our empirical analysis were consistent with our 

theoretical propositions. We found that OSS consumers were significantly more likely to report 

the same security weaknesses that their direct suppliers had previously disclosed. We further 

showed that the severity of the vulnerability moderated knowledge spillover. The disclosures of 

critical vulnerabilities, relative to noncritical ones, yielded a substantially higher degree of 

interorganizational learning and knowledge spillovers in the OSS ecosystem.  

Overall, this research makes two main contributions. First, we develop a novel theoretical 

framework for understanding open source security. Through the lenses of organizational learning 

and software supply chains, we explain and show how software dependencies become channels 

for knowledge spillovers, such that OSS projects learn from their suppliers to improve the 

security of their own software. Second, this paper helps bridge two enduring research topics—

OSS development and information security—in the information systems (IS) scholarship that 

had been largely disconnected. As open source security becomes an increasingly salient issue in 

the digital society, IS researchers can offer important insights to this ongoing critical dialogue 

and compelling implications for practitioners and policymakers about how to secure the open 

source ecosystem. Our work represents one of the first steps in this direction. 

 
4 Take the Log4Shell vulnerability for example: the scope of this study concerns the spread of security knowledge related to the 
technical roots of the vulnerability (e.g., improper input validation, uncontrolled resource consumption, and so on) from Log4j 
(the supplier) to its downstream consumers OSS packages, rather than the spread of the Log4Shell vulnerability on the internet. 
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CONCEPTUAL BACKGROUND 

Open-Source Development and Software Supply Chains 

Over the past two decades, OSS has become a mainstream approach to software development, 

attracting support and engagement from individual developers, governmental and 

nongovernmental organizations, and commercial corporations. This open source movement has 

been coupled with, and reinforced by, the emergence of digitalization. On the one hand, OSS 

embodies a new organizing logic of digital innovation whereby the innovation processes involve 

fluid boundaries, and distributed agencies and the innovation outcomes are modular and 

reprogrammable (Nambisan et al., 2017; Yoo et al., 2010). On the other hand, digital platforms 

such as GitHub assist in standardizing and streamlining the workflows for developing OSS 

projects and enacting socio-technical affordances to address the challenges of knowledge 

exchange, deliberation, and combination in large-scale collaborations (Malhotra et al., 2021).  

Prior research has explored many theoretical underpinnings of OSS development. Earlier 

work in this area sought to understand the intrinsic and extrinsic motivations behind voluntary 

contributions by software developers (Roberts et al., 2006; von Krogh et al., 2012) and has 

examined the governance mechanisms and dimensions in such a distributed, community-based 

environment (O’Mahony & Ferraro, 2007; Tullio & Staples, 2013). Researchers have also 

provided significant insights into the coordination among distributed actors and tasks within OSS 

projects through routines and open superposition (Germonprez et al., 2021; Howison & 

Crowston, 2014; Lindberg et al., 2016). As corporate involvement in OSS projects becomes 

increasingly common, a number of scholars have begun to examine how firm attributes, such as 

ideology and credibility, affect the relationship between commercial firms and OSS communities 

(Daniel et al., 2018; Spaeth et al., 2015), and why OSS engagements create value for the 

business (Germonprez et al., 2017; Lin & Maruping, 2022; Nagle, 2018).  
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An important topic that has received less discussion in the prevailing OSS literature and 

IS research in general is the notion of software supply chain, which was defined as “the network 

of stakeholders that contribute to the content of a software product or that have the opportunity to 

modify its content” (Alberts et al., 2011, p. 2). A primary mechanism through which software 

supply chains are formed is by importing external software artifacts into one’s own software.5 

This allows software developers to directly apply and execute the code written by others so that 

they do not need to reinvent the wheel. This type of code reuse is pervasive in OSS development 

(Haefliger et al., 2008; Stanko, 2016) and gives rise to complex software supply chains that 

manifest not only during the development and testing phases of the software but also in the 

production environment (Cox, 2019). Through this massive network of software dependencies, 

OSS projects benefit from reusing external software to reduce costs and increase efficiency in 

OSS development. The downside, however, is that any software vulnerability in an OSS artifact 

can rapidly propagate across the network through multiple layers of dependencies. This could 

impact every OSS artifact downstream in the software supply chain.  

Although software supply chains are present in the OSS ecosystem as well as proprietary 

software products (Ellison & Woody, 2010), there are functional and structural differences in the 

software supply chains of OSS compared to the ones in proprietary software. In terms of the 

functional differences, proprietary software often requires formal licensing agreements and fees, 

which come with some level of warranty for the software. To avoid legal and financial liabilities 

 
5 Another common type of code reuse is forking. By forking, software developers make a copy of the content in an existing OSS 
repository. This allows anyone to take full control of the codebase so as to modify or experiment with the code. Forking is 
particularly useful in enabling external developers without a write access to a repository to easily propose changes (e.g., fixing a 
bug or adding a feature) and contribute back to the source repository through a pull request. From the perspectives of open source 
security and software supply chains, forking relationships are much less salient compared to dependency relationships because 
the former are less common in production environments. Moreover, forking relationships are much simpler than dependency 
relationships for two reasons. First, an OSS project can be forked from one existing project, but an OSS project typically has 
many software dependencies (The Linux Foundation, 2022). Second, forking relationships rarely go beyond one degree (A  B), 
whereas dependency relationships typically extend beyond one degree (A  B  C  D). As such, we focus on dependency, 
rather than forking, relationships in this study. 
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from their software defects, proprietary software vendors are typically obligated to push software 

updates and patches to their consumers (Arora et al., 2008; Ellison & Woody, 2010). By contrast, 

there is no such contractual quality guarantee in the use of OSS, and as such, it is the consumers’ 

responsibility to monitor and update their dependencies when a new version is made available by 

their suppliers (Synopsys, 2022). As for structural differences, MacCormack et al. (2006) 

showed that OSS software architecture is more modular than proprietary software architecture 

because OSS is typically developed by a distributed team, whereas proprietary software tends to 

involve a collocated team of developers. This difference in software designs can directly affect 

the number of dependencies and their pattern of distribution (MacCormack et al., 2006), 

subsequently shaping the structure of their respective software supply chains. Furthermore, 

proprietary software, unlike OSS, typically discourages, even prohibits, consumers from 

viewing, modifying, or redistributing the source code. This should make proprietary software 

less accessible and remixable, which in turn reduces its likelihood of becoming a dependency of 

another software. As a result, the software supply chains in the OSS ecosystem are expected to 

be longer (i.e., more layers of dependencies) and broader (i.e., higher number of dependencies in 

a software artifact) when compared to the ones in the context of proprietary software 

development.  

Such functional and structural characteristics of the software supply chains in the OSS 

ecosystem have implications for organizational learning and the management of vulnerable 

dependencies. On the one hand, OSS consumers are expected to take a more active and 

conscious role in monitoring and applying software updates from their suppliers (Prana et al., 

2021). This should better effectuate the processes and outcomes of learning from supplier’s 

vulnerabilities. On the other hand, OSS consumers naturally have more opportunities than their 

commercial counterparts to acquire knowledge from their suppliers because OSS tends to have 
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more external dependencies; at the same time, the suppliers’ vulnerable code and their 

corresponding fixes are made available for the consumers to access and review. In summary, 

software supply chains in the OSS ecosystem are expected to play a greater role in knowledge 

transfer and learning in OSS projects than in proprietary software development.   

Software Vulnerabilities 

Software vulnerabilities are defects in software code that can be exploited by an attacker to make 

the software act in unintended and unexpected ways. The prevalence and economic impact of 

software vulnerabilities make them an enduring topic in information security research.6 Much of 

this research has been focused on four interrelated aspects of software vulnerability management: 

discovery, disclosure, diffusion, and patching. Discovering the existence of a vulnerability is 

typically the first step in software vulnerability management (Ransbotham et al., 2012). Prior 

research shows that characteristics of the discoverer, the vulnerability, and the software can 

affect disclosure timing (Sen et al., 2020) as well as patching behavior (Arora et al., 2010). 

Because the vast majority of software vulnerabilities were discovered by non-malicious actors, it 

is now a standard cybersecurity practice to withhold public disclosure until a patch for the 

vulnerability is available (Sen et al., 2020). Results from prior analytical and empirical research 

suggest that publicly disclosing a software vulnerability can accelerate patch release, on the one 

hand, and the diffusion of attacks seeking to exploit the vulnerability, on the other hand (Arora et 

al., 2010; Mitra & Ransbotham, 2015). Although patch releases are critical in addressing 

vulnerabilities, Arora and Telang (2005) found that they are also associated with a spike in 

attacks, suggesting that attackers are targeting users of the software who did not promptly patch 

 
6 The 2017 Equifax data breach was a high-profile example showing the economic impact of software vulnerabilities. It was 
caused by an unpatched software flaw in Apache Struts, an open source framework for developing web applications. The flaw 
allowed remote attackers to execute arbitrary commands and, as a result, compromised sensitive personal information of nearly 
150 million Americans, according to Equifax. 
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the vulnerability.  

The existing knowledge regarding software vulnerabilities in OSS is relatively limited. 

Prior research on open-source security has primarily focused on two categories of questions: 

whether OSS is more secure than closed-source software, and how OSS developers react to 

software vulnerabilities differently compared to their closed-source counterparts. In general, 

researchers found no substantial differences between OSS and closed-source software in terms of 

the risk and severity of software vulnerabilities (Altinkemer et al., 2008; Payne, 2002; Schryen, 

2011), but there was some evidence that the OSS may release patches faster than closed-source 

software (Arora et al., 2010; Temizkan et al., 2012). As such, Schryen (2011, p. 139) suggested 

that “we should explore other factors rather than asking whether open source or closed source 

software leads to higher levels of security.” 

The unique nature of OSS challenges some of the assumptions in prior analytical models 

for optimal disclosure and patching policies. For example, OSS licenses typically explicitly state 

that the licensor provides the work on an “as is” basis, without warranties of any kind. As such, 

OSS projects do not financially internalize any customer losses, making it difficult to derive the 

optimal disclosure policy from customer losses as proposed by Arora et al. (2008). Similarly, 

with code contributed by volunteer developers, it is not straightforward to use the patch 

development costs (cf, Cavusoglu et al., 2007) to study patch release policies in OSS because the 

costs could be virtually zero in OSS settings. Thus, research on software vulnerabilities in OSS 

would require a new conceptual framework beyond the conventional view centered on 

commercial software vendors.  

Meanwhile, the open source ecosystem has its own unique challenges and considerations 

as regards software vulnerabilities. For example, many OSS developers do not prioritize 

dependency updates when a new version of the dependencies becomes available (Kula et al., 
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2018). This is because dependency updates may induce breaking changes. Therefore, this 

requires extra migration effort for OSS developers to test and fix any incompatibility issues that 

come with the new software dependencies. With inadequate resources and unpaid labor, OSS 

developers are often less attentive to dependency management tasks (Bogart et al., 2015; Eghbal, 

2020). By the same token, research has shown that OSS project maintainers were less likely to 

invest in preemptive security practices, such as security training and audits, and instead relied 

heavily on community support to address security issues (Pashchenko et al., 2020).  

To summarize, software vulnerabilities in OSS are important, but understudied. Despite 

the rich analytical and empirical insights in the software vulnerability literature, it remains 

unclear how the security of OSS should be conceptualized and improved. A potentially fruitful 

theoretical lens for studying software vulnerabilities in OSS is organizational learning from 

security incidents, which we will elaborate on as follows.  

Organizational Learning from Security Incidents 

Software vulnerabilities and other security incidents often provide opportunities for 

organizational learning. In their recent review of how organizations learn from IS incidents, 

Mehrizi et al. (2022) developed an integrated conceptual framework with three distinct learning 

modes: reflective (i.e., learning from the past for the future), embedded (i.e., learning from the 

present for the present), and prospective (i.e., learning from the future for the future). They 

observed that this literature has predominantly been concentrated on reflective learning from 

incidents, emphasizing post-incident analysis and incident knowledge dissemination as two 

important learning practices (see, e.g., Gal-Or & Ghose, 2005; McLaughlin & Gogan, 2018). 

These two learning practices are distinct from, yet complementary to each other: post-incident 

analysis seeks to identify root causes and extract generalizable lessons from the incident, 

whereas incident knowledge dissemination aims to distribute and share incident knowledge 
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across organizational units and boundaries (Mehrizi et al., 2022). In other words, reflective 

learning involves a deep reflection of the incident and can take place at the organizational and 

interorganizational levels (Majchrzak & Jarvenpaa, 2010; Skopik et al., 2016).  

Despite this extensive literature on organizational learning from security incidents, prior 

studies were typically contextualized in canonical and well-bounded organizations, such as 

commercial firms and governmental agencies. More likely than not, the processes and outcomes 

of knowledge creation, retention, and sharing in these organizations will differ from those in 

online OSS communities (Faraj et al., 2011; Safadi et al., 2021). For example, whereas 

commercial firms often have a dedicated team or department for cybersecurity management and 

incident response (Ahmad et al., 2020), most OSS projects do not have the resources and 

capacity to include such dedicated security personnel in the projects. Similarly, although 

researchers have recognized that learning from security incidents can arise at the 

interorganizational level (Mehrizi et al., 2022), there is a paucity of theorizing and evidence on 

how such learning may arise in online OSS communities.  

In summary, significant gaps remain in our understanding of organizational learning from 

security incidents in the OSS context. Our research contributes to this discourse by theorizing 

one potential mechanism by which organizational learning and knowledge spillover may 

manifest from vulnerability disclosures through software dependencies in the open source 

ecosystem.  

THEORY DEVELOPMENT 

In this section, we develop a framework for understanding knowledge spillovers from 

vulnerability disclosures in the open source ecosystem, as depicted in Figure 1. We will argue 

that through the mechanism of organizational learning, OSS projects are more likely to identify 

and disclose security weaknesses that had been revealed earlier in their direct suppliers’ 
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vulnerability disclosures. Specifically, we will explain why the knowledge transfer and learning 

would occur across the software supply chain from a supplier to its consumers and how the 

criticality of the disclosed software vulnerability from the supplier may moderate such learning 

at the interorganizational level.  

Figure 1. Conceptual Model 

 

Knowledge Spillovers from Vulnerability Disclosures 

When an OSS project discloses a vulnerability, the purpose is first and foremost to increase 

public awareness of the specific vulnerability in the software so that its users, including 

downstream projects in the software supply chain, can take timely remediation actions, such as 

patching or removing the affected software asset, to avoid potential exploits. Beyond this 

primary purpose of addressing the incident at hand, vulnerability disclosures can provide 

opportunities for learning in other OSS projects. We propose a spillover effect of vulnerability 

disclosures: OSS projects are more likely to identify and disclose security weaknesses that were 

previously disclosed by their direct OSS suppliers. At the center of our reasoning are two 

interrelated mechanisms in vulnerability disclosures and the software supply chains: (1) the 

abstraction and codification of technical weaknesses in vulnerability disclosures and (2) the 
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transfer of security knowledge through software dependencies. As we explain in the following, 

they are consistent with post-incident analysis and incident knowledge dissemination in 

reflective learning from security incidents (Mehrizi et al., 2022). 

Vulnerability disclosures from OSS projects as well as other proprietary software vendors 

typically involve some degree of knowledge abstraction and codification. Theory and evidence 

in the organizational learning literature suggest that abstraction and codification can make 

knowledge more readily transferable (Argote, 2013; Zander & Kogut, 1995; Zollo & Winter, 

2002). Besides incident-specific and response-oriented information (for example, how attackers 

can exploit the vulnerability, what versions of the software are affected, and where to obtain a 

patch), it has been a norm in the vulnerability disclosure process for software owners and 

security analysts to reflect on the specific vulnerability and use the common weakness 

enumeration (CWE) coding scheme to characterize the technical core of the security 

vulnerability (Schryen, 2011).7 As a community-developed coding scheme, CWE is intended to 

facilitate communication among diverse stakeholders about vulnerabilities and exposures in 

computer software. To this point, Boh (2007) has suggested that institutionalized-codification 

mechanisms (such as template, database, and standardized methodology) are most suitable for 

knowledge sharing among geographically dispersed project-based organizations when the nature 

of work is standardized. This is also consistent with Nonaka’s theory of organizational 

knowledge creation that “explicit” knowledge is actionable across contexts and accessible 

through consciousness (Nonaka & von Krogh, 2009). These codified technical weaknesses in 

OSS suppliers’ vulnerability disclosures should help develop abstract, generalizable lessons and 

identify systematic causes, as in conventional post-incident analysis. 

 
7 See https://cwe.mitre.org/about/index.html 

https://cwe.mitre.org/about/index.html
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Although codified security knowledge is more easily transferable, the direction of 

knowledge transfer will likely be affected by contextual factors within and across organizations 

(Argote, 2013). Interorganizational learning and knowledge spillover from a focal organization 

to other organizations in the environment have been well documented in prior research in non-

OSS settings, such as commercial corporations and academic research centers (Argote et al., 

2021; Autio et al., 2004; Zollo & Reuer, 2010). Consistent with this literature, we argue that OSS 

projects are more likely to acquire knowledge from their direct suppliers. It is important to note 

that in the United States alone, there are more than 10,000 vulnerabilities being discovered and 

disclosed every year in the National Vulnerability Database. Although these vulnerability 

disclosures are released to the public and made available to everyone, it is unlikely that OSS 

projects keep track of all these disclosures, especially given their lack of resources and labor 

(Geiger et al., 2021). As such, OSS projects would likely pay more attention to vulnerability 

disclosures from a narrow set of selected sources. When deciding which sources to prioritize, 

OSS projects will most likely prioritize those with which they have a direct relationship. One 

apparent choice is the OSS projects they depend on—that is, their direct OSS suppliers. Hansen 

(1999) has found that a strong tie between the two parties is often required for transferring 

complex knowledge. As a result, OSS projects would be more likely to pay attention to their 

suppliers’ vulnerability disclosures and subsequently acquire security-related knowledge from 

there. This will increase the likelihood that these consumers will identify and disclose similar 

security weaknesses that were previously disclosed by their suppliers.  

In summary, with knowledge abstraction and codification in vulnerability disclosures and 

software dependencies as channels for knowledge transfer in the OSS ecosystem, we propose: 

PROPOSITION 1. OSS consumers are more likely to disclose security weaknesses that 
were previously disclosed by their direct OSS suppliers. 
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Moderation by Criticality 

Software vulnerabilities have varying degrees of severity, ranging from low to critical. The 

information security literature has shown that the severity of a software vulnerability has 

significant implications, affecting the timing of vulnerability disclosure (Sen et al., 2020), the 

propagation of the vulnerability (Chinthanet et al., 2021), the timeliness of patch release (Arora 

et al., 2010), and the efficacy of organizational learning (Ahmed & Lee, 2020).  

OSS projects will likely perceive a more profound need for learning when their suppliers 

disclose critical software vulnerabilities and better retain the “lessons learned” from these critical 

software vulnerabilities (Dahlin et al., 2018; Madsen & Desai, 2010). This is consistent with the 

evidence from the organizational learning literature that organizations are more attentive to 

learning from errors with relatively severe consequences (Homsma et al., 2009). On this point, 

Frese and Keith (2015) provided a clear and compelling justification. In their words: 

Errors with strong negative consequences attract attention and indicate 
unequivocally that something needs to [be] done; this then leads to learning 
because people reflect on and discuss their errors, changing routines and 
understanding. Successful actions or errors with small negative consequences 
do not indicate a necessity for change. Therefore, errors with small 
consequences or those that can be corrected immediately are more easily 
overlooked or ignored. (p. 676) 

In addition, critical vulnerabilities are more likely to induce external and internal 

communications. Externally, the degrees of press coverage and social media discussions should 

be higher regarding critical software vulnerabilities in an OSS project (Drupsteen & 

Guldenmund, 2014). As such, they are less likely to be omitted or ignored by the downstream 

OSS consumer projects. Internally, critical vulnerabilities, especially from their suppliers, are 

more likely to promote discussion and reflection among the maintainers of an OSS project. This 

should better enable knowledge retention and its subsequent use in identifying similar 

vulnerabilities within their own projects (Argote, 2013).  
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In view of the aforementioned, it can be argued that critical software vulnerabilities have 

the potential to intensify knowledge transfer, retention, and use. This will moderate the 

knowledge spillovers that we proposed earlier.  

PROPOSITION 2. The degree of knowledge spillovers as proposed in Proposition 1 will be 
more pronounced when the disclosed vulnerabilities from the OSS suppliers are critical. 

EMPIRICAL STRATEGY 

Data 

To test our propositions, we assembled a unique dataset by integrating data from three sources: 

the National Vulnerability Database (NVD), Libraries.io, and Google’s open source 

vulnerabilities database.  

The NVD is the de facto vulnerability disclosure system. Hosted by the U.S. National 

Institute of Standards and Technology, it has been the most complete source of public 

vulnerability disclosures and used extensively in prior software vulnerability research (e.g., 

Arora et al., 2010; Mitra & Ransbotham, 2015; Ransbotham et al., 2012). Each vulnerability 

record in NVD contains a wide variety of information. Table 1 uses the Log4Shell vulnerability 

as an example to illustrate some of the key elements available in a vulnerability record in NVD. 

Specifically, each vulnerability disclosure in NVD is uniquely identified by a common 

vulnerabilities and exposures (CVE) number and comes with a publication date to indicate when 

a vulnerability was disclosed to the public. A vulnerability report also often contains a list of 

weaknesses based on the CWE coding scheme to characterize the technical roots of the 

vulnerability (Schryen, 2011). The severity base score in a vulnerability report is a numerical (0–

10) representation of the severity and risk of the focal security vulnerability assigned by NVD 

analysts, following the Common Vulnerability Scoring System (CVSS) industry standard. In 

practice, a vulnerability is considered critical when its severity base score is 9 or greater.  
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Table 1. Key Elements in the Log4Shell Vulnerability Report in NVD 
CVE Number CVE-2021-44228 
Published Date 12/10/2021 
Description Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2, 

2.12.3, and 2.3.1) JNDI [Java Naming and Directory Interface] features used in 
configuration, log messages, and parameters do not protect against attacker-
controlled LDAP [Lightweight Directory Access Protocol] and other JNDI-related 
endpoints. An attacker who can control log messages or log message parameters 
can execute arbitrary code loaded from LDAP servers when message lookup 
substitution is enabled. … 

Weakness 
Enumeration 

CWE-20: Improper Input Validation  
CWE-400: Uncontrolled Resource Consumption 
CWE-502: Deserialization of Untrusted Data 
… 

Severity Base score: 10.0 

The Libraries.io data provide a cross-sectional snapshot of public OSS repositories as of 

January 12, 2020 (Katz, 2020).8 Recently, this dataset was used in the Census II report from the 

Linux Foundation and the Laboratory for Innovation Science at Harvard to understand the usage 

of OSS packages (Nagle et al., 2022). The Libraries.io data contain rich information about 

repository-level attributes and statistics, such as programming language and number of 

contributors. The most unique aspect of the Libraries.io data is that they aggregate dependency 

relationships among OSS projects from many different package managers, yielding over 235 

million interdependencies among 33 million repositories. This enabled us to identify supplier–

consumer dyads in the OSS ecosystem. In our study, the OSS suppliers and consumers were 

identified at the level of individual repositories. This avoids the issue that an OSS project may 

involve multiple repositories and enables us to better capture software dependencies and 

incorporate repository-level controls for each project.   

To achieve a mapping between the vulnerability records from NVD and the OSS data 

from Libraries.io, we relied on Google’s open source vulnerabilities database. This database has 

been released and maintained by Google since 2021.9 It provides a crosswalk between CVE 

 
8 https://libraries.io/data  
9 See https://opensource.googleblog.com/2021/02/launching-osv-better-vulnerability.html. It is important to note that this 

https://libraries.io/data
https://opensource.googleblog.com/2021/02/launching-osv-better-vulnerability.html
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numbers and OSS package names.  

Research Design and Sample Construction 

We distinguished two time periods in our research design, using January 12, 2020, when the 

Libraries.io data were released, as the cutoff date (Figure 2). We used data from the pre-period 

(between 2017-01-01 and 2020-01-12) to construct our sample, detect supplier–consumer 

dependencies, and identify disclosed vulnerabilities and weaknesses in OSS suppliers. The OSS 

projects and dependencies were version agnostic in our research design (e.g., “Log4j” rather than 

“Log4j-2.15.0”). This was to circumvent the complexities associated with analyzing software 

versions (Nagle et al., 2022) and make the analysis computationally feasible.10 The OSS 

suppliers we considered were OSS artifacts that had a vulnerability disclosure in the pre-period, 

and the OSS consumers were OSS artifacts that directly depended on these suppliers in the pre-

period. In other words, our sample was from supplier–consumer dyads that had a direct 

dependency, and we omit indirect software dependencies in our study. From this pool of OSS 

consumers, we used data from the post-period (between 2020-01-13 and 2022-12-31) to identify 

their vulnerability disclosures and technical weaknesses.  

 
database is different from the Open Source Vulnerability Database used in prior research (e.g., Sen et al., 2020). Though both 
databases serve similar purposes, the latter was launched in 2004 by Jake Kouhns and shut down in 2016.  
10 We found that a versioned dependency network of our sample OSS projects was about 25 times larger than an unversioned 
one. Given that our analysis on unversioned supplier–consumer dyads required over 40GB of computer memory, the analysis of 
versioned supplier–consumer dyads likely would require at least 1TB of computer memory, assuming that the amount of 
computer memory needed grows linearly with the size of the input data.  
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Figure 2. Research Design 

 

Given that a CVE report can have multiple CWE codes, the unit of observations in our 

regression analysis was at the level of supplier-CWE-consumer triads. This allowed us to encode 

the presence (or absence) of a specific security weakness in an OSS consumer in the post-period 

and the presence (or absence) of the weakness in its OSS supplier in the per-period. Figure 3 

provides a schematic illustration of our data structure in regression analysis, which, as we 

elaborate next, allows us to capture CWE-specific knowledge transfer between supplier–

consumer dyads and control the heterogeneity in CWE codes.  

Figure 3. Illustrating the Unit of Observations at the Suppler-CWE-Consumer Level in 
Regression Analysis 
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Methodology 

With our research design, our analytical objective was to examine whether the technical 

weaknesses (i.e., CWE codes) in the consumers’ vulnerability disclosures in the post-period were 

the same as the ones in the vulnerability disclosures from their direct suppliers in the pre-period. 

Accordingly, we estimated the following regression model:  

𝐶𝐶𝑖𝑖,𝑘𝑘 = 𝛽𝛽𝑆𝑆𝑗𝑗,𝑘𝑘 + 𝛾𝛾𝑿𝑿𝑖𝑖 + 𝛿𝛿𝑾𝑾𝑗𝑗 + 𝛼𝛼𝑘𝑘 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑘𝑘, 

where i, j, and k denote consumer, supplier, and weakness, respectively. The outcome variable, 

𝐶𝐶𝑖𝑖,𝑘𝑘 (CONSUMER DISCLOSES CWE k), was a dummy indicating whether OSS consumer i 

reports a type k weakness in the post-period. The main independent variable was 𝑆𝑆𝑗𝑗,𝑘𝑘 

(SUPPLIER DISCLOSED CWE k), which was a dummy indicating whether the supplier j 

reported a type k weakness in the pre-period. Our primary interest was in the coefficient 𝛽𝛽, 

which detected whether 𝑆𝑆𝑗𝑗,𝑘𝑘 was associated with 𝐶𝐶𝑖𝑖,𝑘𝑘. The 𝑿𝑿𝑖𝑖 and 𝑾𝑾𝑗𝑗 were vectors of log-

transformed baseline control variables as of 2020-01-12 from consumer i and supplier i, 

respectively. These included AGE (difference, in years, between repository creation date and 

2020-01-12), STARS COUNT (number of stars on the repository), CONTRIBUTORS COUNT 

(number of unique contributors that have committed to the repository), and DEPENDENTS 

COUNT (number of other projects that declared the project as a dependency). These control 

variables reflected the likelihood of security vulnerability and the health of the focal OSS 

community (Arora et al., 2010; Geiger et al., 2021; Goggins et al., 2021). We also included a 

dummy, CRITICAL VULN, in 𝑾𝑾𝑗𝑗 to indicate whether the disclosed vulnerability was critical 

(i.e., CVSS base score of 9 or above) for the OSS suppliers. Finally, we incorporated two sets of 

fixed effects (FEs) in our empirical model. First, we used CWE FEs, 𝛼𝛼𝑘𝑘, to account for time-

invariant, unobservable characteristics of the weaknesses. Since some weaknesses may be easier 
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to discover or more common than others in OSS development, the CWE FEs would capture and 

address these unobservable weakness-specific factors in our estimation. We also included FEs 

for the consumer’s programming language, 𝜇𝜇𝑖𝑖.
11 Different programming languages tend to have 

distinct security properties (e.g., Go is a memory-safe language while C is not). At the same 

time, the norms and standards in software development and maintenance practices vary 

depending on the programming languages (Decan et al., 2019). Such language-specific 

unobservables would be controlled and absorbed by 𝜇𝜇𝑖𝑖.  

Aside from the main model, our Proposition 2 involves a moderation effect. We tested it 

by adding an interaction term between 𝑆𝑆𝑗𝑗,𝑘𝑘 and CRITICAL VULN into the main model. A 

significant coefficient for the interaction term would suggest that the criticality of the supplier’s 

vulnerability can moderate the spillover of security knowledge over software supply chains.  

For identification purposes, we further imposed a few restrictions when constructing our 

research data. First, we focused on OSS projects hosted on GitHub to obtain relevant control 

variables and avoid the potential discrepancy in OSS vulnerability disclosures caused by the 

project hosting sites. Second, we limited OSS consumers to those that had not disclosed any 

vulnerabilities in the pre-period to avoid potential impacts from such earlier disclosures in the 

post-period. Third, we excluded supplier–consumer dyads when the two projects were created by 

the same organization, in accordance with the scope of our theorizing of knowledge transfer and 

learning at the interorganizational level.12 Fourth and finally, because we identified security 

weaknesses through CWE codes in vulnerability disclosures and because the vulnerability 

 
11 We did not include FEs for the supplier’s programming language because in most cases, supplier and consumer are using the 
same programming language. The results of our estimation were greatly similar if we included FEs for the supplier’s, instead of 
the consumer’s, programming language in our model.  
12 For example, “rails/rails” had a dependency on “rails/sprockets,” and as such, the latter was considered as a supplier of the 
former. However, we excluded this supplier–consumer dyad because both OSS projects were developed within the same 
organization “rails.”  
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disclosures from the suppliers and the consumers are from two different time periods, we limited 

our analysis to CWE codes that appear in both pre- and post-periods. This removed new (only in 

the post-period) and potentially outdated (only in the pre-period) CWE codes and enabled us to 

incorporate the CWE FEs into our empirical model.  

In all, our final sample comprised 385,722 supplier–consumer dyads, with 430 unique 

suppliers and 288,132 unique consumers. The suppliers collectively disclosed 1,292 

vulnerabilities in the pre-period, and the consumers disclosed 865 vulnerabilities in the post-

period. These numbers may seem small, but this was because we purposefully removed certain 

suppliers, consumers, supplier–consumer dyads, and vulnerabilities in our empirical analysis, as 

we described earlier, to be able to better identify the proposed organizational learning effects. 

Also, as we will further elaborate and verify later in our analysis of mechanisms, it is important 

to note that these suppliers and consumers did not have the exact same vulnerability because the 

vulnerabilities of the suppliers and consumers came from different CVE reports.13 Table 2 

provides a summary of the data statistics for our variables.  

 
13 To see this, consider the Log4Shell vulnerability. Even though Log4j is widely used and Log4Shell impacted virtually all 
Log4j’s consumers, none of these consumers will have a CVE report on the Log4Shell vulnerability because the CVE assignment 
rules prohibit duplicated CVE reports for the same vulnerability. Since we identified CWEs from suppliers’ and consumers’ CVE 
reports and the suppliers and consumers will not have CVE reports for the exact same vulnerability, our design is robust against 
the concern that the CWE codes shared by the supplier–consumer dyads may due to the diffusion of software vulnerabilities.  
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Table 2. Data Statistics 

Variable Dummy Obs. Mean SD Min Max 
CONSUMER DISCLOSES CWE k (i.e., 𝐶𝐶𝑖𝑖,𝑘𝑘) Yes 29,644,056 0.00 0.01 0 1 
SUPPLIER DISCLOSED CWE k (i.e., 𝑆𝑆𝑗𝑗,𝑘𝑘) Yes 29,644,056 0.03 0.16 0 1 
CONSUMER AGE No 29,644,056 3.23 2.14 0 12 
CONSUMER STARS COUNT No 29,644,056 133.25 1514.87 0 155566 
CONSUMER CONTRIBUTORS COUNT No 29,644,056 6.10 30.57 0 2647 
CONSUMER DEPENDENTS COUNT No 29,644,056 31.25 1555.12 0 451563 
SUPPLIER AGE No 29,644,056 8.27 2.03 1 12 
SUPPLIER STARS COUNT No 29,644,056 25359.58 22889.06 0 137880 
SUPPLIER CONTRIBUTORS COUNT No 29,644,056 316.35 186.04 0 1247 
SUPPLIER DEPENDENTS COUNT No 29,644,056 54866.82 53343.54 0 151954 
CRITICAL VULN Yes 29,644,056 0.29 0.45 0 1 

Econometrically, our data were cross-sectional. Estimating causal relationships from 

cross-sectional data is typically difficult because of the issue of reverse causality and the impact 

of unobservables. However, it is important to note that the “treatment” variable, 𝑆𝑆𝑗𝑗,𝑘𝑘, and the 

“outcome” variable, 𝐶𝐶𝑖𝑖,𝑘𝑘, in our design came from two different time periods. This should 

alleviate the concern about reverse causality. Furthermore, 𝑆𝑆𝑗𝑗,𝑘𝑘 was likely exogenous in our 

regression because, for the most part, OSS consumers have no control over whether, when, or 

what security vulnerabilities their OSS suppliers disclose. One may have the concern that OSS 

consumers could affect their OSS suppliers’ vulnerability disclosures by reporting security bugs 

to their suppliers in the pre-period. As we will show, there is no substantial evidence that the 

OSS consumers in our sample contributed to their suppliers in the pre-period. More importantly, 

if they did, this in theory would attenuate our estimated 𝛽𝛽 coefficient because, having been 

attentive to such security weaknesses in the pre-period, these OSS consumers would be less 

likely to develop code with these technical weaknesses in the first place, making it more difficult 

for us to detect an effect of 𝑆𝑆𝑗𝑗,𝑘𝑘 and yielding a more conservative estimate for the 𝛽𝛽 coefficient.  
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RESULTS  

Main Results 

Table 3 reports the results of our estimation. From columns 1 and 2, we find that the coefficients 

of 𝑆𝑆𝑗𝑗,𝑘𝑘 are positive and significant in models without and with control variables. Therefore, 

Proposition 1 is supported, indicating that OSS projects are more likely to identify and disclose 

security weaknesses that were previously disclosed by their direct OSS suppliers. The results 

from column 3 show a positive and significant coefficient for 𝑆𝑆𝑗𝑗,𝑘𝑘 * CRITICAL VULN. This 

supports Proposition 2 and suggests that the criticality of suppliers’ vulnerability moderates the 

knowledge spillover. Interestingly, the coefficient of the interaction term (0.451) is nearly three-

quarters that of the coefficient of 𝑆𝑆𝑗𝑗,𝑘𝑘 (0.605). This means that in both statistical and practical 

aspects, the disclosure of critical vulnerabilities by OSS suppliers induces a significantly higher 

degree of knowledge spillovers to consumers when compared to the disclosure of noncritical 

vulnerabilities.  
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Table 3. Main Results 

DV: 𝐶𝐶𝑖𝑖,𝑘𝑘 (CONSUMER DISCLOSES CWE k) (1) (2) (3) 
Main effect only Full model Moderation  

𝑆𝑆𝑗𝑗,𝑘𝑘 (SUPPLIER DISCLOSED CWE k) 1.522*** 0.702** 0.605* 
(0.340) (0.261) (0.280) 

Log CONSUMER AGE  -0.247 -0.246 
 (0.274) (0.274) 

Log CONSUMER STARS COUNT  0.481*** 0.481*** 
 (0.046) (0.046) 

Log CONSUMER CONTRIBUTORS COUNT  0.655*** 0.654*** 
 (0.096) (0.095) 

Log CONSUMER DEPENDENTS COUNT  -0.084** -0.083** 
 (0.032) (0.031) 

Log SUPPLIER AGE  0.208 0.217 
 (0.176) (0.177) 

Log SUPPLIER STARS COUNT  0.105 0.106 
 (0.068) (0.068) 

Log SUPPLIER CONTRIBUTORS COUNT  -0.231** -0.232** 
 (0.073) (0.074) 

Log SUPPLIER DEPENDENTS COUNT  -0.147*** -0.146*** 
 (0.034) (0.033) 

CRITICAL VULN  -0.082 -0.187* 
 (0.083) (0.099) 

𝑆𝑆𝑗𝑗,𝑘𝑘 × CRITICAL VULN   0.451*** 
  (0.098) 

CWE FEs Yes Yes Yes 
Consumer language FEs Yes Yes Yes 
Pseudo R-squared 0.104 0.332 0.333 
Number of unique CWEs 78 78 78 
Observations 29644056 29644056 29644056 
Notes: Robust standard errors (clustered at FE variables) are shown in parentheses. *** p < 0.01; ** p < 0.05; * p < 
0.1 

Alternative Specifications and Robustness Checks 

We implemented two different approaches to assess the robustness of these main results. First, 

we considered an alternative model specification that included three-way FEs for consumer OSS, 

supplier OSS, and CWE codes. We did not use this in our main analysis because the three-way 

FEs would significantly reduce the number of observations in our cross-sectional observations. 
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More importantly, with this specification, we would not be able to estimate the moderation effect 

because the moderator, along with all other control variables, would be absorbed by the OSS 

FEs. Nevertheless, this specification could be useful to address OSS-level unobservables in our 

estimation. Column 1 of Table 4 shows the results from this three-way FE model. The coefficient 

of 𝑆𝑆𝑗𝑗,𝑘𝑘 remains positive (0.755, p < 0.05) and has a similar magnitude to the one in column 2 of 

Table 3 (0.702) without the OSS-level FEs in the estimation. This suggests that the control 

variables in our main analysis were adequate, and OSS-level unobservables may not be a 

primary concern in our analysis.  

Second, we applied the coarsened exact matching (CEM) procedure to refine the 

regression sample in our main analysis (Iacus et al., 2011, 2012). Specifically, we matched 𝑆𝑆𝑗𝑗,𝑘𝑘 

based on the control variables. Our CEM procedure used Sturges’ rule for automatic bin 

construction, coarsened the values in each of these control variables into different strata, and 

retained only strata that had both treated (𝑆𝑆𝑗𝑗,𝑘𝑘 = 1) and control (𝑆𝑆𝑗𝑗,𝑘𝑘 = 0) observations. Using 

the matched sample from this CEM procedure, we reestimated our empirical models and 

reported the results in columns 2 and 3 of Table 4. Overall, we found that the results with CEM 

were qualitatively similar to the main results reported earlier.  
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Table 4. Robustness Checks 

DV: 𝐶𝐶𝑖𝑖,𝑘𝑘 (CONSUMER DISCLOSES CWE k) (1) (2) (3) 
Three-way FEs CEM full model CEM moderation  

𝑆𝑆𝑗𝑗,𝑘𝑘 (SUPPLIER DISCLOSED CWE k) 0.755** 0.624*** 0.569*** 
(0.325) (0.192) (0.212) 

Log CONSUMER AGE  -0.262 -0.262 
 (0.401) (0.401) 

Log CONSUMER STARS COUNT  0.540*** 0.540*** 
 (0.080) (0.080) 

Log CONSUMER CONTRIBUTORS COUNT  0.588*** 0.587*** 
 (0.152) (0.152) 

Log CONSUMER DEPENDENTS COUNT  -0.128*** -0.128*** 
 (0.036) (0.036) 

Log SUPPLIER AGE  0.253** 0.254** 
 (0.125) (0.125) 

Log SUPPLIER STARS COUNT  0.026 0.026 
 (0.071) (0.071) 

Log SUPPLIER CONTRIBUTORS COUNT  -0.104 -0.104 
 (0.078) (0.078) 

Log SUPPLIER DEPENDENTS COUNT  -0.149*** -0.149*** 
 (0.029) (0.029) 

CRITICAL VULN  0.101 0.068 
 (0.108) (0.121) 

𝑆𝑆𝑗𝑗,𝑘𝑘 × CRITICAL VULN   0.254*** 
  (0.075) 

Consumer FEs Yes No No 
Supplier FEs Yes No No 
CWE FEs Yes Yes Yes 
Consumer language FEs Yes Yes Yes 
Coarsened exact matching No Yes Yes 
Pseudo R-squared  0.148 0.389 0.389 
Number of unique CWEs 78 76 76 
Observations 77922 28840176 28840176 
Notes: Robust standard errors (clustered at FE variables) are shown in parentheses. In column 1, coefficients for 
control variables and the interaction term are not available because consumer- and supplier-level FEs absorb their 
variations. In columns 2 and 3, the number of unique CWEs and observations are different from our main results 
because the set of valid CWEs (that is, appeared in the pre- and post-periods) changed as a result of CEM. *** p < 
0.01; ** p < 0.05; * p < 0.1  

Analysis of Mechanisms and Alternative Explanations 

To complement our main results, we conducted a set of additional analyses to ascertain that our 
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proposed theoretical mechanism—that is, organizational learning over software supply chains 

from OSS suppliers’ vulnerability disclosures—is plausible in explaining the observed 

knowledge spillovers. Table 5 summarizes these additional analyses and their principal results, 

which we discuss as follows.  

Table 5. Analysis of Mechanisms 

Alternative explanations/mechanisms Executed tests Results 
1. OSS projects may be learning from 

nonsuppliers, and as such, the 
observed main and moderation 
effects would exist even without 
software dependencies. 

Implement placebo tests and 
label CWEs based on alternative 
vulnerability disclosures 
published around the same time 
rather than the ones from the 
suppliers/consumers. 

The placebo results are 
insignificant, suggesting 
that software 
dependencies play a key 
role in the learning 
process. 

2. The suppliers and consumers could 
be in the same application categories 
so that the consumers may learn from 
others in the same category rather 
than from their suppliers. 

Identify project topics and 
reestimate the empirical models 
using only supplier–consumer 
dyads that had no overlapping 
topics. 

Results show similar 
patterns and magnitude of 
coefficients as the main 
results reported earlier.  

3. The vulnerabilities in the consumer 
OSS projects may be the same as 
their suppliers’ vulnerabilities—that is, 
the observed main and moderation 
effects were the diffusion of the 
suppliers’ original vulnerabilities, 
rather than the results of learning. 

Verify whether consumers’ 
vulnerability disclosures 
mentioned the supplier’s CVE 
number. 

We did not find any such 
instances in our sample.   

4. It could be third-party security 
researchers or random volunteer 
developers, rather than the core 
members of the consumer OSS 
project, who learned from the 
supplier’s vulnerability disclosure. 

Conduct qualitative review and 
coding for the vulnerability 
discoverers in 30 randomly 
selected consumer OSS projects. 

Most of the discoverers 
were core members in the 
consumer OSS projects, 
suggesting that learning 
took place within consumer 
OSS projects. 

5. The core members in the consumer 
OSS projects may contribute to their 
suppliers’ projects and learn from this 
experience, rather than through 
suppliers’ vulnerability disclosures. 

Extend the preceding qualitative 
analysis to examine whether and 
how the core members in the 
consumer OSS projects engaged 
in their suppliers’ projects. 

Very few such cases, 
suggesting that learning by 
contributing was unlikely 
the main driver of the 
knowledge spillovers.  

Role of Software Dependencies 

Our theorizing hinges on software dependencies as channels for knowledge transfer. As such, it 

is of critical importance to verify if that is indeed the case. A reasonable and plausible alternative 

explanation is that OSS consumers may be learning from nonsuppliers, and as such, software 

dependencies may not be relevant. To address this concern, we examined the role of software 

dependencies through placebo tests. The rationale of our placebo tests is simple: if the suppliers’ 
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vulnerability disclosures indeed triggered knowledge spillover and organizational learning on the 

consumers’ side, we should not detect a significant coefficient for 𝑆𝑆𝑗𝑗,𝑘𝑘 if the 𝑆𝑆𝑗𝑗,𝑘𝑘 (𝐶𝐶𝑖𝑖,𝑘𝑘) variable 

does not reflect the security weaknesses of the supplier (consumer).  

Following this logic, we implemented two placebo tests, one with a placebo 𝑆𝑆𝑗𝑗,𝑘𝑘 and the 

other with a placebo 𝐶𝐶𝑖𝑖,𝑘𝑘. To derive these placebo quantities, for each vulnerability disclosure 

from the supplier and consumer we randomly selected another vulnerability disclosure that was 

published around the same time and used the CWE codes in this “false” vulnerability disclosure 

to label 𝑆𝑆𝑗𝑗,𝑘𝑘 in the first placebo test and 𝐶𝐶𝑖𝑖,𝑘𝑘 in the second one. Table 6 reports the results from 

these two placebo tests. We find that the coefficients of 𝑆𝑆𝑗𝑗,𝑘𝑘 and the 𝑆𝑆𝑗𝑗,𝑘𝑘× CRITICAL VULN 

interaction term are consistently insignificant. This provides evidence that the weaknesses 

identified and disclosed by OSS consumers are driven by the weaknesses identified and 

disclosed by their OSS suppliers. In other words, software dependencies indeed play an essential 

role in the knowledge spillover process. 
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Table 6. Placebo Tests 

 Placebo supplier CWEs Placebo consumer CWEs 

DV: 𝐶𝐶𝑖𝑖,𝑘𝑘 (CONSUMER DISCLOSES CWE k) (1) (2) (3) (4) 
Full model Moderation  Full model Moderation  

𝑆𝑆𝑗𝑗,𝑘𝑘 (SUPPLIER DISCLOSED CWE k) 0.119 0.146 0.079 0.015 
(0.267) (0.278) (0.224) (0.210) 

Log CONSUMER AGE -0.214 -0.214 -0.129 -0.129 
(0.251) (0.251) (0.268) (0.267) 

Log CONSUMER STARS COUNT 0.474*** 0.474*** 0.488*** 0.488*** 
(0.048) (0.048) (0.040) (0.040) 

Log CONSUMER CONTRIBUTORS COUNT 0.674*** 0.674*** 0.655*** 0.655*** 
(0.099) (0.099) (0.117) (0.116) 

Log CONSUMER DEPENDENTS COUNT -0.086*** -0.086*** -0.094*** -0.093*** 
(0.027) (0.027) (0.030) (0.030) 

Log SUPPLIER AGE 0.021 0.019 -0.133 -0.130 
(0.227) (0.226) (0.292) (0.289) 

Log SUPPLIER STARS COUNT 0.112** 0.112** 0.119* 0.119* 
(0.055) (0.056) (0.065) (0.065) 

Log SUPPLIER CONTRIBUTORS COUNT -0.239*** -0.238*** -0.253*** -0.254*** 
(0.052) (0.053) (0.088) (0.089) 

Log SUPPLIER DEPENDENTS COUNT -0.159*** -0.160*** -0.163*** -0.162*** 
(0.033) (0.034) (0.031) (0.030) 

CRITICAL VULN -0.068 -0.046 -0.137 -0.173* 
(0.071) (0.097) (0.091) (0.091) 

𝑆𝑆𝑗𝑗,𝑘𝑘 × CRITICAL VULN  -0.146  0.297 
 (0.173)  (0.223) 

CWE FEs Yes Yes Yes Yes 
Consumer language FEs Yes Yes Yes Yes 
Pseudo R-squared 0.328 0.328 0.312 0.312 
Number of unique CWEs 75 75 81 81 
Observations 28804650 28804650 31228011 31228011 
Notes: Robust standard errors (clustered at FE variables) are shown in parentheses. The number of unique CWEs 
and observations are different from our main results because the set of valid CWEs (that is, appeared in the pre- and 
post-periods) changed as we modified the CWEs in the vulnerability disclosures from the suppliers/consumers. *** p 
< 0.01; ** p < 0.05; * p < 0.1 

Similarity of Application Domains in Supplier and Consumer OSS 

A related possibility is that OSS consumers may merely pay attention to and learn from other 

OSS projects in the same application domains. If OSS consumers and suppliers tend to belong to 
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the same domains, there is a risk that our results may conflate software dependencies with 

domain similarity. To investigate this alternative explanation that domain similarity may be 

driving the knowledge spillovers, we followed the recent software engineering literature that 

categorizes OSS projects and identifies similar OSS projects through the topics of their GitHub 

repositories (Izadi et al., 2021; Sharma et al., 2017). The rationale here is that if we could obtain 

topic labels for each of the supplier and consumer OSS in our sample, we can easily remove 

supplier–consumer dyads that have overlapped topics and reestimate our empirical models using 

the subsample, which presents no domain similarity in any supplier–consumer dyads.  

There are two potential approaches to obtaining OSS topics. The first approach is to use 

the topic labels provided by the project owners. Since 2017, GitHub has allowed users to specify 

the topics of their own OSS repositories.14 Given that project owners likely have the best 

knowledge about the nature and domain of their own projects, topic labels specified by them 

should provide the best characterization of their OSS. The issue with this approach is that many 

project owners have not specified topic labels for their OSS repositories. Therefore, another 

approach to obtaining topic labels is by analyzing the description of a project. On GitHub, 

project owners often (but not always) include a README file in their OSS repositories to 

communicate important information about their projects.15 Prior studies have applied machine 

learning methods, such as topic modeling or multilabel classification, to predict topics from OSS 

projects’ README files (e.g., Izadi et al., 2021; Sharma et al., 2017). These machine learning 

methods are helpful for deriving topic labels, especially when the project owners do not specify 

the topics of their GitHub repositories.  

We consider both approaches in this analysis. In our original sample of 288,562 OSS 

 
14 https://github.blog/2017-01-31-introducing-topics/  
15 https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-
readmes  

https://github.blog/2017-01-31-introducing-topics/
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes


33 

 

projects, 175,384 (60.7%) had topic labels specified by their owners. Beyond these projects, we 

implemented the state-of-the-art machine learning procedure proposed by Izadi et al. (2021) to 

predict and obtain topic labels for additional 51,533 OSS projects that did not have owner-

specified topics but had a README file with an English-based description (see Appendix A for 

details of this topic prediction procedure).  

After removing supplier–consumer dyads that had overlapped topics, the number of 

dyads in our sample reduced from 385,722 in our original sample to 192,505 when considering 

only topic labels specified by the project owner and 234,539 when considering topic labels 

specified by the project owner and predicted from README files. Table 7 reports the empirical 

results estimated using these subsamples. Overall, these results are consistent with those in our 

main analysis and show similar patterns and magnitude for the coefficients of 𝑆𝑆𝑗𝑗,𝑘𝑘 and the 𝑆𝑆𝑗𝑗,𝑘𝑘× 

CRITICAL VULN interaction term. This suggests that domain similarity was not a plausible 

explanation for the observed knowledge spillovers, and consumers indeed learned from their 

suppliers rather than from OSS projects in the same application domains.  
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Table 7. Results from Supplier–Consumer Dyads without Overlapped Topics 

Sources of topic labels Specified by project owner  Specified by project owner and 
predicted from README file 

DV: 𝐶𝐶𝑖𝑖,𝑘𝑘 (CONSUMER DISCLOSES CWE k) (1) (2) (3) (4) 
Full model Moderation  Full model Moderation  

𝑆𝑆𝑗𝑗,𝑘𝑘 (SUPPLIER DISCLOSED CWE k) 0.719*** 0.636*** 0.710*** 0.628** 
(0.150) (0.188) (0.202) (0.233) 

Log CONSUMER AGE -0.166 -0.166 -0.104 -0.105 
(0.346) (0.346) (0.279) (0.279) 

Log CONSUMER STARS COUNT 0.498*** 0.498*** 0.492*** 0.492*** 
(0.051) (0.051) (0.037) (0.037) 

Log CONSUMER CONTRIBUTORS COUNT 0.694*** 0.691*** 0.659*** 0.657*** 
(0.130) (0.128) (0.112) (0.110) 

Log CONSUMER DEPENDENTS COUNT -0.107*** -0.105*** -0.099*** -0.098*** 
(0.023) (0.023) (0.020) (0.020) 

Log SUPPLIER AGE 0.150 0.162 0.074 0.083 
(0.118) (0.119) (0.186) (0.188) 

Log SUPPLIER STARS COUNT 0.019 0.015 0.050 0.048 
(0.118) (0.118) (0.105) (0.106) 

Log SUPPLIER CONTRIBUTORS COUNT -0.126 -0.120 -0.198* -0.194 
(0.079) (0.079) (0.106) (0.106) 

Log SUPPLIER DEPENDENTS COUNT -0.111* -0.110* -0.086 -0.085 
(0.055) (0.054) (0.052) (0.051) 

CRITICAL VULN -0.050 -0.159* -0.038 -0.134 
(0.077) (0.086) (0.098) (0.112) 

𝑆𝑆𝑗𝑗,𝑘𝑘 × CRITICAL VULN  0.450***  0.414** 
 (0.105)  (0.149) 

CWE FEs Yes Yes Yes Yes 
Consumer language FEs Yes Yes Yes Yes 
Pseudo R-squared 0.346 0.347 0.331 0.331 
Number of unique CWEs 68 68 68 68 
Observations 12915512 12915512 15729760 15729760 
Notes: Robust standard errors (clustered at FE variables) are shown in parentheses. The number of unique CWEs 
and observations are different from our main results because the set of valid CWEs (that is, appeared in the pre- and 
post-periods) changed as we restricted this analysis to supplier–consumer dyads that had no overlapped topics. *** p 
< 0.01; ** p < 0.05; * p < 0.1 

Knowledge Spillovers vs. Diffusion of Software Vulnerabilities 

Another valid concern is that the vulnerability discovered in an OSS consumer may be the result 

of its supplier’s vulnerability. In other words, what we observed could be merely the diffusion of 
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software vulnerabilities rather than knowledge transfer and organizational learning. Although a 

vulnerability does spread through software supply chains, it is important to note that the spread 

of a vulnerability will not lead to multiple CVE numbers. This is because only the upstream 

software in which the vulnerability originated should be assigned a CVE number.16 As such, the 

vulnerabilities disclosed by the consumer OSS were unlikely to be the same as those disclosed 

by their upstream suppliers. Since we used CVE numbers to differentiate vulnerability 

disclosures and the vulnerability disclosures from the suppliers and consumers in our sample all 

had different CVE numbers, our empirical design should automatically avoid the threat that the 

supplier–consumer dyads were having the exact same software vulnerabilities. We nonetheless 

verified this potential threat by examining whether any of the vulnerability disclosures from the 

OSS consumers in our sample had mentioned or made a reference to their respective supplier’s 

CVE number. As expected, we did not find any such instances.  

Vulnerability Discoverers 

We conducted a qualitative review and coding to address another alternative explanation: it may 

be some third-party OSS users or security researchers who learned from the suppliers’ 

vulnerability disclosures and helped identify and report the vulnerabilities to the consumer OSS 

projects. In that case, we could still observe the spillover effect from vulnerability disclosures, 

but the mechanism would be different from organizational learning as we proposed. We 

investigated this alternative explanation by considering 30 randomly selected vulnerability 

disclosures from our sample’s OSS consumers in the post-period. We manually reviewed their 

vulnerability disclosures on the NVD website. We traced back to their GitHub commits, issues, 

and pull requests to identify how the vulnerabilities were initially discovered, and more 

 
16 For CVE assignment rules, see https://www.cve.org/ResourcesSupport/AllResources/CNARules#section_7_assignment_rules.  

https://www.cve.org/ResourcesSupport/AllResources/CNARules#section_7_assignment_rules
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importantly, who discovered and reported the vulnerabilities.  

We labeled each of the vulnerability discoverers in one of the following categories: core 

member, peripheral contributor, or security researcher. Consistent with Crowston et al. (2006), 

a “core member” is a person affiliated with the OSS project or who makes repeated and 

numerous contributions in the development and maintenance of the software. A peripheral 

contributor, meanwhile, is an external software developer or user who is not affiliated with the 

project but makes infrequent or episodic contributions to the OSS project by reporting or fixing 

issues in the software (Barcomb et al., 2020). Finally, a security researcher is an external, 

independent actor who specializes in cybersecurity topics and practices.17 To be able to label 

these discoverers, we systematically reviewed their GitHub user profiles, public code 

repositories, and patterns of engagement with the focal OSS project in which they discovered the 

vulnerability. The organizational learning mechanism is more likely if most of the vulnerabilities 

were discovered by the core members of the OSS projects. On the other hand, if most of the 

vulnerabilities were discovered by peripheral contributors or security researchers, our theorized 

mechanism based on knowledge transfer between an OSS supplier and its OSS consumer is less 

likely to be valid.  

Two researchers worked independently on this qualitative exercise. The intercoder 

agreement from the initial round of coding was 0.9 (27/30; Cohen’s kappa = 0.78; Cronbach’s 

alpha = 0.84), suggesting a substantial degree of internal consistency. All disagreements were 

resolved in the second round. The results of this exercise are shown in Table B1 in Appendix B. 

Among the 30 vulnerabilities, we found that 20 were discovered by core members of the OSS 

projects, five by peripheral contributors, and five by security researchers. This means that 

 
17 OSS projects may have security experts on the team. For the purpose of this qualitative analysis, if the security expert is a 
member of the OSS project, we label them as a core member rather than a security researcher. 
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although peripheral contributors and security researchers can and will play a role in the discovery 

of software vulnerabilities in OSS projects, such external actors were unlikely to be the principal 

driver of the knowledge spillovers we observed in our main results because most of these 

vulnerabilities were discovered by project core members.  

Learning by Contributing 

It is common for OSS developers to affiliate with or contribute to multiple OSS projects. 

Therefore, it is possible that the core members who discovered the security vulnerabilities in 

their own projects were also contributors to their respective supplier projects. Consistent with the 

notions of “learning by contributing” (Nagle, 2018) and “learning from experience” (Boh et al., 

2007), this approach would allow these OSS developers to gain firsthand knowledge about the 

security weaknesses in the supplier projects, and as a result, the supplier’s vulnerability 

disclosures may not be necessary to initiate knowledge spillovers.  

Given that supplier vulnerability disclosures are an essential pillar in our theoretical 

development, it is imperative for us to assess this alternative learning-by-contributing 

explanation. To this end, we investigated whether and how the 20 core members identified in our 

qualitative analysis contributed to their supplier projects. The results, reported in Table B2 in 

Appendix B, reveal that such instances are uncommon, although they did happen in a couple of 

these cases. This suggests that compared with the learning by contributing mechanism, the 

vulnerability disclosures from the suppliers were likely a more salient driver for the knowledge 

spillovers that we observed in our main results.  

Sum of Evidence 

In summary, our findings suggest a hitherto unexplored phenomenon of knowledge spillovers 

from supplier projects to consumer projects in the OSS ecosystem. These findings are robust to 

various alternative model specifications. Analyzing the underlying mechanisms, the evidence 
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shows that software dependencies are critical in effectuating knowledge spillovers, which are not 

explained by the domain similarity between supplier and consumer projects. Our qualitative 

analyses further reveal that the vulnerability discoverers were mostly the core members of the 

consumer OSS projects rather than third-party OSS developers or security researchers. 

Consistent with our theorizing, this suggests that security knowledge was indeed acquired by the 

consumer OSS project teams. We also found that most of these core members were not 

contributors to the supplier projects. This implies that members of consumer projects learned 

about security knowledge from their suppliers’ public vulnerability disclosures rather than from 

direct experience working in the supplier projects. Taken together, we recognize and 

acknowledge that there could be multiple causal pathways leading to the observed knowledge 

spillovers (such as security researchers, peripheral contributors, and learning by contributing), 

and as a result, the true effect size might be smaller than the model suggests. Nevertheless, the 

empirical evidence collectively suggests that organizational learning from vulnerability 

disclosures through software supply chains was a more plausible and salient mechanism 

compared to the alternatives. 

DISCUSSION AND CONCLUSION 

OSS is an integral part of modern digital infrastructure. The growing number of OSS 

vulnerabilities and their adverse impacts on digital sovereignty are confronting us more than ever 

with the need to better understand and enhance open source security. Our research provides 

novel theoretical and empirical insights into the positive knowledge spillovers of vulnerability 

disclosures in the OSS ecosystem. That is, when an OSS project (i.e., a supplier) discloses a 

software vulnerability, the security knowledge will be transferred through software supply chains 

to downstream OSS projects (i.e., consumers) and enable the latter group to better identify new 

vulnerabilities with similar technical roots in their own code repositories. We further 
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demonstrate that knowledge spillover is moderated by the severity of supplier’s vulnerability in 

which critical vulnerability, compared to noncritical vulnerability, yields nearly twice the effect 

size in inducing knowledge spillover. 

Theoretical Contributions 

This study makes three theoretical contributions. Our first contribution is to view open source 

security from the perspective of software supply chains. This perspective sheds light on a 

theoretically important relationship among OSS projects based on software dependencies, 

leading to the distinction between suppliers and consumers in the OSS ecosystem. Prior research 

has highlighted the issues of task interdependencies and developer interdependencies within an 

OSS project and explained how routines can be a coordination mechanism in OSS development 

(Lindberg et al., 2016). Our notion of software supply chains across OSS projects expands our 

understanding of interdependencies in OSS development from the task and developer levels to 

the artifact level. This gives rise to new opportunities to examine issues related to collaboration, 

learning, and knowledge sharing and reuse across OSS projects in their software supply chains.  

Second, we developed a theory of open source security. Though OSS development and 

information security are both enduring topics in IS research, the intersection of the two has 

received hardly any direct attention in IS scholarship. We draw on organizational learning theory 

to explain why and how security knowledge in an OSS project’s vulnerability disclosure can spill 

over to its downstream OSS consumers, enabling the latter to better discover software 

vulnerabilities with similar technical roots in their own projects (Mehrizi et al., 2022). The core 

of our theoretical development is the abstraction and codification of security weaknesses found 

in vulnerability disclosures and the transfer and reuse of security knowledge through the channel 

of software dependencies. We further suggest that knowledge spillover is moderated by the 

severity of the suppliers’ vulnerabilities, whereby critical vulnerabilities would strengthen the 
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spillover effect. Our empirical analysis supports the proposed knowledge spillover and 

organizational learning through software supply chains, as well as the moderation role of the 

criticality of the supplier’s vulnerability in the OSS ecosystem. 

Finally, this research adds to the organizational learning literature. In developing our 

theoretical framework, we emphasized how OSS projects benefit from their suppliers. As 

illustrated in Table 8, our focus is on learning activities at the collective level in noncanonical 

organizations (i.e., online communities). This is an emerging and distinct form of organizational 

learning. The existing organizational learning literature tends to focus on learning in canonical 

and well-bounded organizations (i.e., corporations and institutions) at the individual and 

collective level (Majchrzak & Jarvenpaa, 2010; Owen-Smith & Powell, 2004) or learning in 

online communities at the individual level (Hwang et al., 2015). How one online community 

learns from another has received little direct attention in the organizational learning literature. 

We present one such case in the context of securing OSS projects. 

Table 8. Taxonomy of Organizational Learning Research 
 Organizational type 

Canonical / bounded Noncanonical / unbounded 
Level of 
analysis 

Individual  Knowledge sharing among individuals 
within or across corporations and 
institutions.  
 
For example, homeland security 
professionals from different agencies 
share information to resolve security 
threats (Majchrzak & Jarvenpaa, 2010). 

Knowledge sharing among 
individuals in an online community. 
 
For example, individuals in an 
online community share knowledge 
with others who have similar 
interests (Hwang et al., 2015). 

Collective Knowledge sharing among corporations 
and institutions.  
 
For example, biotechnology firms in 
Boston improve their innovation 
performance through an industrial 
alliance (Owen-Smith & Powell, 2004). 

Knowledge sharing among different 
online communities. 
 
For example, OSS projects share 
security knowledge to identify 
software vulnerabilities (this study). 

Practical Implication 

Our findings regarding knowledge spillovers from vulnerability disclosures have important 
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practical and policy implications for open source security. While prior research focuses on the 

considerations of vulnerability disclosure for proprietary software vendors (Arora et al., 2010; 

Mitra & Ransbotham, 2015; Sen et al., 2020), our findings underscore the necessity of 

vulnerability disclosure for OSS projects and show the additional benefits of vulnerability 

disclosure to the security of software supply chains. In particular, an effective strategy to 

improve the security of OSS projects is to learn from their suppliers’ vulnerabilities. From this 

perspective, OSS projects should be encouraged, even incentivized, to disclose their security 

vulnerabilities after the vulnerabilities are patched as part of their risk management routines 

(Germonprez et al., 2021). After OSS project teams discover and fix a security-related issue, a 

public disclosure about the existence of the vulnerability is beneficial to the security of the OSS 

ecosystem, even if the vulnerability has a lower severity. This is because by releasing an official 

vulnerability disclosure, the focal OSS project would be able to better retain the security 

knowledge from this experience through knowledge abstraction and codification. In addition, it 

will facilitate downstream OSS consumers in identifying security weaknesses of the same nature 

in their projects.  

Limitations and Future Research 

Our work has limitations. First, aside from the criticality of the vulnerability, we did not consider 

other contingencies that may affect knowledge spillover from OSS projects’ vulnerability 

disclosures. This is to maintain the focus and parsimony of our theory (Weber, 2003). 

Nevertheless, it is likely that there are other factors at the levels of the platform, OSS project, or 

individual developers that can facilitate or hinder the degree of knowledge spillovers in our 

setting. Future research could extend our theoretical framework, with consideration of these 

contextual factors to broaden the understanding of the contingencies in knowledge spillovers and 

their boundary conditions.  



42 

 

Second, we were not able to examine the temporal dynamics of learning in OSS projects 

owing to the nature of our cross-sectional data. As Argote et al. (2021) pointed out, 

“organizations vary in the rate at which they learn” (p. 5399). OSS projects may have different 

learning curve patterns based on their projects’ complexity, maturity, and popularity. Therefore, 

future researchers with access to panel data could extend our theoretical framework to explain 

the temporal dynamics of the spillover of security knowledge in vulnerability disclosures.  

Third, for conceptual simplicity and computational feasibility, we restricted our 

theoretical development and empirical analysis to the knowledge transfer from suppliers to their 

direct consumers and unversioned software dependencies. However, a case can be made that the 

knowledge transfer could go beyond one level of dependencies and reach all downstream OSS 

projects. Similarly, the consideration of versioned software dependencies could potentially reveal 

more insights into the nature and history of the supplier–consumer relationship. We welcome 

future research that may relax these restrictions.  

Finally, we limited our empirical analysis to a sample of OSS projects on GitHub to 

alleviate platform-specific heterogeneity and unobservables. Although GitHub is by far the most 

popular platform for OSS development and has been used in much OSS research (e.g., Chen et 

al., 2022; Lin & Maruping, 2022; Lindberg et al., 2016), there exist many other similar 

platforms, such as Bitbucket, GitLab, and SourceForge. Future investigators may consider OSS 

projects on other (or multiple) platforms to examine the generalizability of our theory. 
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APPENDIX A 

Predicting Topics for GitHub Repositories 

According to GitHub, topics are labels that create subject-based connections between GitHub 

repositories. As such, topics can be useful for identifying the application domains of OSS 

projects. For example, the maintainers of Apache Log4j specify the project to have the following 

topic labels: java, api, library, log4j, jvm, logger, logging, syslog, apache, and log4j2. Although 

topics can help improve the discoverability and reveal important qualities of GitHub projects, 

many GitHub projects do not have any topic labels assigned to them because doing so requires 

additional effort and attention from the project owners. Therefore, several researchers have 

proposed machine learning methods for predicting topics for GitHub repositories. To make topic 

label predictions, scholars have utilized bytecode and interdependencies (Vargas-Baldrich et al., 

2015), domain knowledge from StackOverflow (Cai et al., 2016), and textual descriptions (Izadi 

et al., 2021).  

Given the characteristics of our data, the topic prediction approach proposed by Izadi et 

al. (2021) is most applicable. The approach consists of three steps: data preparation and 

preprocessing; model training; and model evaluation and use. We followed their approach to 

predict the topics of OSS projects in our sample in situations where the projects do not have any 

owner-specified topic labels. Technical details of this approach can be found in Izadi et al. 

(2021). In what follows, we provide a high-level overview of implementing this approach in our 

setting.  

Step 1: data preparation and preprocessing. As in any supervised machine learning 

exercise, the first step is to develop a testbed of instances with appropriate labels. We identified 

and downloaded GitHub projects that have an English-based README file and have been 

assigned topic labels by their project owners. We preprocessed the textual descriptions in 
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README files using common text mining procedures, which include tokenizing the text; 

converting tokens to lowercase; removing punctuations, digits, and URLs; omitting stop words; 

and removing tokens with a frequency of fewer than 50 in the collection. The remaining tokens 

in a README description served as features for the respective OSS project. The topic labels are 

the targets of our predictions. The topics were matched against GitHub’s featured topics or their 

aliases. Although over 5000 unique topics were initially identified, we followed Izadi et al. 

(2021) and focused on predicting the GitHub-featured topics because these topics are validated 

and curated by the entire GitHub community. We further restricted the topic labels to the top 200 

most frequent topics because they cumulatively represented over 90% of topics being assigned to 

GitHub repositories. At the end, our testbed comprised a collection of 130,869 GitHub projects 

with English textual descriptions and at least one GitHub-featured topic. We split these GitHub 

projects into a training set (80%) and a testing set (20%). 

Step 2: model training. Using data from the training set, we trained multiple text 

classifiers to learn the relationship between tokens in README descriptions and their 

corresponding topics. Because an OSS project can have multiple topics, the text classifiers were 

set up to perform multilabel classification. Izadi et al. (2021) considered four candidate text 

classifiers. The first classifier is Naive Bayes (denoted by NB). This classifier can be 

implemented in two ways: one based on the term frequency-inverse document frequency (TF-

IDF) features, and another using a Doc2Vec representation in which word-embedding vectors 

were used to capture the semantic meanings of textual descriptions. The second classifier is 

logistic regression (denoted by LR), which learned a function to predict the log odds of each 

topic given the TF-IDF features or the Doc2Vec representations of the textual descriptions. The 

third classifier is FastText, which learned the Word2Vec representations of words in the textual 

descriptions of GitHub projects and used a hierarchical softmax loss function to train a tree-
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based classifier. The last classifier is based on DistilBERT, which is the condensed version of the 

state-of-the-art BERT model via an introduction of knowledge distillation during the pretraining 

phase. DistilBERT retains 97% of BERT’s language understanding capability with 60% faster 

training time. A multilabel classification layer is added on top of DistilBERT for fine-tuning the 

model for topic prediction. Additionally, instances with less frequent topics are assigned higher 

weights in DistilBERT’s loss function to address the imbalanced topic distribution in the training 

data. The parameters of the classifiers followed the configurations in Izadi et al. (2021). For 

example, the learning rate of DistilBERT was set to 3e-5, the maximum input length to 512, and 

the batch size to four. The number of features for TF-IDF was set to 20,000, and the dimension 

of Doc2Vec was set to 1,000 with a minimum frequency of 10. 

Step 3: model evaluation and use. We followed Izadi et al. (2021) and evaluated the 

performance of the candidate text classifiers using five evaluation metrics: recall, precision, F1 

measure, success rate, and label ranking average precision (LRAP). Recall quantifies the 

percentage of actual topics that are correctly predicted. Recall-at-5 (denoted by R@5), hence, is 

the average percentage of actual topics that are correctly predicted in the model’s top five 

predicted topic labels. Precision is measured by the percentage of predicted topics that are 

correct. Precision-at-5 (denoted by P@5) reports the average percentage of correct topic 

predictions in the model’s top five predicted topic labels. F1 measure-at-5 (denoted by F@5) is 

the harmonic mean of recall-at-5 and precision-at-5. The success rate at 𝑘𝑘 (denoted by S) 

measures the percentage of each model’s top 𝑘𝑘 predicted topics that are correct. S@1 measures 

whether the most probable topic predicted by the model is correct. S@5 measures whether at 

least one of the five most probable topics predicted by the model is correct. LRAP examines the 

ranking of the probable topics predicted by each model and computes the overall percentage of 

higher-ranked topics that are correct. LRAP is calculated by the average label ranking precision 
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of each project, which is calculated by ∑ �ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑗𝑗 𝑒𝑒𝑟𝑟𝑟𝑟𝑘𝑘𝑗𝑗⁄ �𝑗𝑗∈𝐽𝐽 |𝐽𝐽|⁄ , where 𝐽𝐽 is the set of correct 

topics, 𝑒𝑒𝑟𝑟𝑟𝑟𝑘𝑘𝑗𝑗  is the rank of topic 𝑗𝑗, and ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑗𝑗 is the number of correct topics ranked higher 

than topic 𝑗𝑗. Table A1 summarizes the performance of the candidate models when evaluated 

against data from the testing set. We found that DistilBERT outperformed other models across 

all evaluation metrics, which is consistent with the findings reported by Izadi et al. (2021). 

Hence, we chose to leverage the DistilBERT model to predict the topic labels of OSS projects in 

our sample when they were not specified by their project owners.  

Table A1. Performance Evaluation Results 

Model S@1 S@5 R@5 P@5 F1@5 LRAP 
NB, D2V 0.218 0.629 0.459 0.167 0.232 0.171 
NB, TF-IDF 0.320 0.421 0.292 0.100 0.140 0.220 
LR, D2V 0.195 0.620 0.445 0.159 0.222 0.154 
LR, TF-IDF 0.373 0.854 0.705 0.256 0.356 0.320 
FastText 0.634 0.873 0.725 0.263 0.363 0.630 
DistilBERT 0.651 0.900 0.770 0.284 0.392 0.665 
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APPENDIX B 

Detailed Results of Qualitative Review and Coding 

Table B1. Analyzing Discoverers of OSS Consumers’ Vulnerabilities 

# OSS consumer CVE number Discoverer Discoverer type 
1 23andme/yamale CVE-2021-38305 mildebrandt Core member 
2 abel533/Mapper CVE-2022-36594 sybb0743 Security researcher 
3 alerta/alerta CVE-2020-26214 satterly Core member 
4 authelia/authelia CVE-2021-29456 james-d-elliott Core member 
5 bolt/core CVE-2021-27367 bobdenotter Core member 
6 clientIO/joint CVE-2021-23444 kumilingus Core member 
7 codecov/codecov-node CVE-2020-7597 drazisil Core member 
8 doctrine/dbal CVE-2021-43608 morozov Security researcher 
9 dpgaspar/flask-appbuilder CVE-2021-29621 dpgaspar Core member 
10 dropwizard/dropwizard CVE-2020-11002 joschi Core member 
11 eclipse-theia/theia CVE-2021-28161 luigigubello Core member 
12 ethercreative/logs CVE-2021-32752 Tam Core member 
13 facebook/hermes CVE-2021-24037 dulinriley Core member 
14 forkcms/forkcms CVE-2020-23960 carakas Core member 
15 formstone/formstone CVE-2020-26768 adrianomarcmont Security researcher 
16 http4s/blaze CVE-2021-21293 rossabaker Peripheral contributor 
17 kaminari/kaminari CVE-2020-11082 viseztrance Core member 
18 locka99/opcua CVE-2022-25903 locka99 Core member 
19 mermaid-js/mermaid CVE-2021-43861 knsv Peripheral contributor 
20 mithunsatheesh/node-rules CVE-2020-7609 mithunsatheesh Core member 
21 mjmlio/mjml CVE-2020-12827 kmcb777 Core member 
22 ome/omero-web CVE-2021-41132 Lachlan Horsey Security researcher 
23 prismjs/prism CVE-2021-3801 ready-research Peripheral contributor 
24 publify/publify CVE-2021-25974 mvz Peripheral contributor 
25 rare-technologies/bounter CVE-2021-41497 Daybreak2019 Security researcher 
26 reg-viz/reg-suit CVE-2021-32673 progfay Core member 
27 tauri-apps/tauri CVE-2022-39215 martin-ocasek Security researcher 
28 tryghost/ghost CVE-2021-39192 zn9988 Peripheral contributor 
29 vyperlang/vyper CVE-2021-41122 charles-cooper Core member 
30 yahoo/elide CVE-2020-5289 wcekan Core member 
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Table B2. Core-Member Discoverers in Consumer Projects and Their Contributions to 
Supplier Projects 

Consumer project Vulnerability discoverer 
(core member in the 
consumer project) 

Supplier project Discoverer’s 
contributions to 
supplier project  

23andme/yamale mildebrandt yaml/pyyaml None 
alerta/alerta satterly pyca/cryptography None 

pallets/flask None 
yaml/pyyaml None 

authelia/authelia james-d-elliott mde/ejs None 
twbs/bootstrap None 
auth0/node-jsonwebtoken None 
jquery/jquery None 
request/request None 
unshiftio/url-parse None 

bolt/core bobdenotter sebastianbergmann/phpunit None 
twigphp/twig None 
erusev/parsedown None 

clientio/joint kumilingus jashkenas/backbone None 
jquery/jquery None 
lodash/lodash None 
webpack/webpack-dev-server None 

codecov/codecov-node drazisil request/request None 
doctrine/dbal morozov sebastianbergmann/phpunit 10 commits 
dpgaspar/flask-appbuilder dpgaspar pallets/flask None 
dropwizard/dropwizard joschi eclipse/jetty.project 3 commits 

fasterxml/jackson-databind None 
scala/scala None 

ethercreative/logs Tam craftcms/cms None 
facebook/hermes dulinriley request/request None 

npm/node-tar None 
forkcms/forkcms carakas symfony/symfony None 

sebastianbergmann/phpunit None 
http4s/blaze rossabaker asynchttpclient/async-http-client None 

scala/scala None 
locka99/opcua locka99 dtolnay/serde-yaml None 
mermaid-js/mermaid knsv lodash/lodash None 

moment/moment None 
webpack/webpack-dev-server None 
dominictarr/event-stream None 

mithunsatheesh/node-rules mithunsatheesh lodash/lodash None 
mjmlio/mjml kmcb777 lodash/lodash None 

jquery/jquery None 
publify/publify mvz flori/json None 
vyperlang/vyper charles-cooper ethereum/py-evm None 
yahoo/elide wcekan fasterxml/jackson-databind None 

eclipse/jetty.project None 
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