
1

A Theory of Open Source Security: The Spillover of Security Knowledge in
Vulnerability Disclosures through Software Supply Chains

Yu-Kai Lin
yklin@gsu.edu

Georgia State University

Weifeng Li
weifeng.li@uga.edu

University of Georgia

Abstract

Open source software (OSS) is critical to digital sovereignty and is required for the modern
digital economy. Despite being widely used and highly valued, OSS is not free from security
defects. Recent discoveries of critical vulnerabilities in OSS, such as “Log4Shell” and
“Heartbleed,” underscore the importance of, and lack of theories about, open source security.
Drawing on organizational learning theory and viewing OSS from the perspective of software
supply chains, this study offers a novel theoretical perspective into positive knowledge spillover
of vulnerability disclosures in the OSS ecosystem. This occurs when an OSS project (that is, a
supplier) discloses a software vulnerability. The security knowledge will be transferred through
software supply chains to downstream OSS projects (i.e., consumers), enabling the latter group
to better identify new vulnerabilities with similar technical weaknesses in their own code
repositories. We further theorized that the severity of the supplier’s vulnerability moderates
knowledge spillover, where a critical vulnerability, as compared to a noncritical one, yields a
much higher spillover that induces interorganizational learning. To validate our theoretical
predictions, we conducted a comprehensive analysis using data assembled from the National
Vulnerability Database, Libraries.io, and Google’s open source vulnerabilities database. We
discovered compelling empirical evidence supporting both the proposed knowledge spillover
effect and the moderating relationship. Acknowledging the existence of various causal pathways
that may contribute to the observed knowledge spillovers, we analyzed potential mechanisms
and showed that our theory (i.e., organizational learning from vulnerability disclosures through
software supply chains) was a more plausible and salient mechanism relative to the alternatives.

Keywords: open source security, open source software, software supply chain, software
dependency, software vulnerability, information security, security incident, organizational
learning, digital sovereignty

mailto:yklin@gsu.edu
mailto:weifeng.li@uga.edu

2

“Free and open source software is a vital cog in the economy, much like
interstate highways, the power grid, or the communications network. Given how
much we already know about those critical infrastructure systems, doesn’t it only
make sense to learn just as much about their 21st century equivalent?” (Lifshitz-
Assaf & Nagle, 2021)

INTRODUCTION

Open source software (OSS) plays a vital role in the current digital economy. Almost all

commercial codebases contain open source components (Synopsys, 2022), and most of the core

software innovations and frameworks in emerging technologies are OSS projects, such as

TensorFlow for artificial intelligence, Ethereum for blockchains, Kubernetes for cloud

computing, and Spark for data analytics. Along with their significant presence, recent research

has shown that OSS can play salient roles in improving productivity and creating value for

commercial firms (Germonprez et al., 2017; Lin & Maruping, 2022; Nagle, 2019).

Despite being widely used and highly valued, OSS is not free from security defects

(Altinkemer et al., 2008; Payne, 2002; Schryen, 2011). The availability of source code to the

public does not automatically make OSS more secure. Because anyone can freely use OSS and

can easily incorporate it into other software applications, security issues in OSS are likely more

contagious and exploitable than their proprietary, closed source counterparts (Ransbotham,

2010).1 The “Log4Shell” vulnerability in the Apache Log4j library discovered in December

2021 was an illuminating example. Log4j is a popular open source logging utility for Java

programs. Any software that uses Log4j can be potentially vulnerable and affected by Log4Shell

because attackers can execute commands remotely on the target machine to steal data, install

malware, or take control. The impact of Log4Shell was extensive because there are billions of

1 We acknowledge that some OSS is proprietary or commercial, and some proprietary and commercial software is open-sourced.
However, for ease of exposition, throughout the paper we consider OSS as noncommercial and nonproprietary, and commercial
and proprietary software as closed source software. This is consistent with the OSS literature and the typical software use cases in
practice. We use the phrases “closed-source software,” “proprietary software,” and “commercial software” interchangeably in
this paper as an alternative group of software artifacts when compared to OSS.

3

devices that run on Java (including computers, phones, ATMs, and home appliances) and

logging is a universal software activity. In the wake of this discovery, the White House promptly

convened government agencies and private sector stakeholders to discuss how to prevent security

defects and vulnerabilities in OSS and improve the process of finding defects and fixing them.2

Meanwhile, newly passed laws and regulations, such as the CHIPS and Science Act (signed into

law by President Joe Biden on August 9, 2022) and the Securing Open Source Software Act

(introduced by the leadership of the Senate Homeland Security and Governmental Affairs

Committee on September 21, 2022), have included provisions to strengthen open source security

and software supply chains. Indeed, flaws in OSS can threaten national security. Just as nations

strive to safeguard their physical infrastructure, there is a growing consensus on the need to

secure the OSS ecosystem because it is key to digital sovereignty (Berlin Declaration, 2020) and

underpins much of the digital infrastructure in the modern economy (Eghbal, 2020; Lifshitz-

Assaf & Nagle, 2021).

In this study we seek to deepen the understanding of open source security, doing so

through the perspective of software supply chains. Some researchers have already noticed that

OSS operates in complex supply chains (Germonprez et al., 2017). The aforementioned Log4j

incident also highlights the fact that OSS packages are intricately interconnected, and as such,

open source security concerns more than just fixing defects within the scope of individual OSS

projects. In fact, most OSS projects reuse external open source code and libraries written by

others to minimize redundant effort. According to a recent study by the Linux Foundation

(2022), on average, an OSS project imports and reuses 68.8 external open source packages. The

interconnected relationships among OSS projects naturally engender a unique ecosystem with

2 See https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeting-on-software-
security/

https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeting-on-software-security/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-house-meeting-on-software-security/

4

multilateral dependencies (Jacobides et al., 2018). In this ecosystem, it is fitting to view the

software dependency relationships between OSS packages as supplier–consumer dyads, in which

a supplier is defined as a software package that provides functionalities for other downstream

software packages, whereas a consumer is a software package that utilizes the functionalities

provided by upstream software packages.3 The role and importance of software supply chains are

therefore salient characteristics of open source security because security vulnerabilities in an

OSS artifact have impacts and implications for other downstream OSS artifacts.

To make progress in understanding how OSS projects manage and respond to security

vulnerabilities, this paper advances a theory of open source security that goes beyond the

boundaries of individual OSS projects and considers the influences of their upstream suppliers.

Viewing OSS from the perspective of software supply chains and drawing on organizational

learning theory (Mehrizi et al., 2022), we propose, explain, and investigate the spillover of

security knowledge in vulnerability disclosures through software supply chains in the OSS

ecosystem: when a supplier discloses a security vulnerability, its downstream consumers will

apply the security knowledge in the disclosed vulnerability to identify similar vulnerabilities in

the future. This work is related to prior research on the spread of security vulnerabilities after

their public disclosures (see, e.g., Mitra & Ransbotham, 2015). However, our research is distinct

from, and therefore, complementary to, this literature in two key aspects. First, we emphasize the

diffusion of security knowledge from the OSS supplier to its OSS consumers. This allows us to

develop a more nuanced understanding of the direction of knowledge diffusion. Second and

perhaps more importantly, in our setting the supplier’s vulnerability and the consumer’s

3 We are not the first one to use “software supply chains,” “suppliers,” and “consumers” to characterize open source security.
They have been the standard terminology in prior research (Ferraiuolo et al., 2022), recent cybersecurity policies in the U.S.
(Executive Office of the President, 2021), as well as industrial initiatives and reports (Synopsys, 2022). We adopt the supply
chain terminology in accordance with this ongoing discourse.

5

vulnerability were not the same. In other words, we examine the spread of knowledge related to

security weaknesses in a vulnerability in the open source ecosystem rather than the spread of the

vulnerability itself.4

We assembled a unique dataset that combined software vulnerability records and OSS

project data to test our theory. Results from our empirical analysis were consistent with our

theoretical propositions. We found that OSS consumers were significantly more likely to report

the same security weaknesses that their direct suppliers had previously disclosed. We further

showed that the severity of the vulnerability moderated knowledge spillover. The disclosures of

critical vulnerabilities, relative to noncritical ones, yielded a substantially higher degree of

interorganizational learning and knowledge spillovers in the OSS ecosystem.

Overall, this research makes two main contributions. First, we develop a novel theoretical

framework for understanding open source security. Through the lenses of organizational learning

and software supply chains, we explain and show how software dependencies become channels

for knowledge spillovers, such that OSS projects learn from their suppliers to improve the

security of their own software. Second, this paper helps bridge two enduring research topics—

OSS development and information security—in the information systems (IS) scholarship that

had been largely disconnected. As open source security becomes an increasingly salient issue in

the digital society, IS researchers can offer important insights to this ongoing critical dialogue

and compelling implications for practitioners and policymakers about how to secure the open

source ecosystem. Our work represents one of the first steps in this direction.

4 Take the Log4Shell vulnerability for example: the scope of this study concerns the spread of security knowledge related to the
technical roots of the vulnerability (e.g., improper input validation, uncontrolled resource consumption, and so on) from Log4j
(the supplier) to its downstream consumers OSS packages, rather than the spread of the Log4Shell vulnerability on the internet.

6

CONCEPTUAL BACKGROUND

Open-Source Development and Software Supply Chains

Over the past two decades, OSS has become a mainstream approach to software development,

attracting support and engagement from individual developers, governmental and

nongovernmental organizations, and commercial corporations. This open source movement has

been coupled with, and reinforced by, the emergence of digitalization. On the one hand, OSS

embodies a new organizing logic of digital innovation whereby the innovation processes involve

fluid boundaries, and distributed agencies and the innovation outcomes are modular and

reprogrammable (Nambisan et al., 2017; Yoo et al., 2010). On the other hand, digital platforms

such as GitHub assist in standardizing and streamlining the workflows for developing OSS

projects and enacting socio-technical affordances to address the challenges of knowledge

exchange, deliberation, and combination in large-scale collaborations (Malhotra et al., 2021).

Prior research has explored many theoretical underpinnings of OSS development. Earlier

work in this area sought to understand the intrinsic and extrinsic motivations behind voluntary

contributions by software developers (Roberts et al., 2006; von Krogh et al., 2012) and has

examined the governance mechanisms and dimensions in such a distributed, community-based

environment (O’Mahony & Ferraro, 2007; Tullio & Staples, 2013). Researchers have also

provided significant insights into the coordination among distributed actors and tasks within OSS

projects through routines and open superposition (Germonprez et al., 2021; Howison &

Crowston, 2014; Lindberg et al., 2016). As corporate involvement in OSS projects becomes

increasingly common, a number of scholars have begun to examine how firm attributes, such as

ideology and credibility, affect the relationship between commercial firms and OSS communities

(Daniel et al., 2018; Spaeth et al., 2015), and why OSS engagements create value for the

business (Germonprez et al., 2017; Lin & Maruping, 2022; Nagle, 2018).

7

An important topic that has received less discussion in the prevailing OSS literature and

IS research in general is the notion of software supply chain, which was defined as “the network

of stakeholders that contribute to the content of a software product or that have the opportunity to

modify its content” (Alberts et al., 2011, p. 2). A primary mechanism through which software

supply chains are formed is by importing external software artifacts into one’s own software.5

This allows software developers to directly apply and execute the code written by others so that

they do not need to reinvent the wheel. This type of code reuse is pervasive in OSS development

(Haefliger et al., 2008; Stanko, 2016) and gives rise to complex software supply chains that

manifest not only during the development and testing phases of the software but also in the

production environment (Cox, 2019). Through this massive network of software dependencies,

OSS projects benefit from reusing external software to reduce costs and increase efficiency in

OSS development. The downside, however, is that any software vulnerability in an OSS artifact

can rapidly propagate across the network through multiple layers of dependencies. This could

impact every OSS artifact downstream in the software supply chain.

Although software supply chains are present in the OSS ecosystem as well as proprietary

software products (Ellison & Woody, 2010), there are functional and structural differences in the

software supply chains of OSS compared to the ones in proprietary software. In terms of the

functional differences, proprietary software often requires formal licensing agreements and fees,

which come with some level of warranty for the software. To avoid legal and financial liabilities

5 Another common type of code reuse is forking. By forking, software developers make a copy of the content in an existing OSS
repository. This allows anyone to take full control of the codebase so as to modify or experiment with the code. Forking is
particularly useful in enabling external developers without a write access to a repository to easily propose changes (e.g., fixing a
bug or adding a feature) and contribute back to the source repository through a pull request. From the perspectives of open source
security and software supply chains, forking relationships are much less salient compared to dependency relationships because
the former are less common in production environments. Moreover, forking relationships are much simpler than dependency
relationships for two reasons. First, an OSS project can be forked from one existing project, but an OSS project typically has
many software dependencies (The Linux Foundation, 2022). Second, forking relationships rarely go beyond one degree (A B),
whereas dependency relationships typically extend beyond one degree (A B C D). As such, we focus on dependency,
rather than forking, relationships in this study.

8

from their software defects, proprietary software vendors are typically obligated to push software

updates and patches to their consumers (Arora et al., 2008; Ellison & Woody, 2010). By contrast,

there is no such contractual quality guarantee in the use of OSS, and as such, it is the consumers’

responsibility to monitor and update their dependencies when a new version is made available by

their suppliers (Synopsys, 2022). As for structural differences, MacCormack et al. (2006)

showed that OSS software architecture is more modular than proprietary software architecture

because OSS is typically developed by a distributed team, whereas proprietary software tends to

involve a collocated team of developers. This difference in software designs can directly affect

the number of dependencies and their pattern of distribution (MacCormack et al., 2006),

subsequently shaping the structure of their respective software supply chains. Furthermore,

proprietary software, unlike OSS, typically discourages, even prohibits, consumers from

viewing, modifying, or redistributing the source code. This should make proprietary software

less accessible and remixable, which in turn reduces its likelihood of becoming a dependency of

another software. As a result, the software supply chains in the OSS ecosystem are expected to

be longer (i.e., more layers of dependencies) and broader (i.e., higher number of dependencies in

a software artifact) when compared to the ones in the context of proprietary software

development.

Such functional and structural characteristics of the software supply chains in the OSS

ecosystem have implications for organizational learning and the management of vulnerable

dependencies. On the one hand, OSS consumers are expected to take a more active and

conscious role in monitoring and applying software updates from their suppliers (Prana et al.,

2021). This should better effectuate the processes and outcomes of learning from supplier’s

vulnerabilities. On the other hand, OSS consumers naturally have more opportunities than their

commercial counterparts to acquire knowledge from their suppliers because OSS tends to have

9

more external dependencies; at the same time, the suppliers’ vulnerable code and their

corresponding fixes are made available for the consumers to access and review. In summary,

software supply chains in the OSS ecosystem are expected to play a greater role in knowledge

transfer and learning in OSS projects than in proprietary software development.

Software Vulnerabilities

Software vulnerabilities are defects in software code that can be exploited by an attacker to make

the software act in unintended and unexpected ways. The prevalence and economic impact of

software vulnerabilities make them an enduring topic in information security research.6 Much of

this research has been focused on four interrelated aspects of software vulnerability management:

discovery, disclosure, diffusion, and patching. Discovering the existence of a vulnerability is

typically the first step in software vulnerability management (Ransbotham et al., 2012). Prior

research shows that characteristics of the discoverer, the vulnerability, and the software can

affect disclosure timing (Sen et al., 2020) as well as patching behavior (Arora et al., 2010).

Because the vast majority of software vulnerabilities were discovered by non-malicious actors, it

is now a standard cybersecurity practice to withhold public disclosure until a patch for the

vulnerability is available (Sen et al., 2020). Results from prior analytical and empirical research

suggest that publicly disclosing a software vulnerability can accelerate patch release, on the one

hand, and the diffusion of attacks seeking to exploit the vulnerability, on the other hand (Arora et

al., 2010; Mitra & Ransbotham, 2015). Although patch releases are critical in addressing

vulnerabilities, Arora and Telang (2005) found that they are also associated with a spike in

attacks, suggesting that attackers are targeting users of the software who did not promptly patch

6 The 2017 Equifax data breach was a high-profile example showing the economic impact of software vulnerabilities. It was
caused by an unpatched software flaw in Apache Struts, an open source framework for developing web applications. The flaw
allowed remote attackers to execute arbitrary commands and, as a result, compromised sensitive personal information of nearly
150 million Americans, according to Equifax.

10

the vulnerability.

The existing knowledge regarding software vulnerabilities in OSS is relatively limited.

Prior research on open-source security has primarily focused on two categories of questions:

whether OSS is more secure than closed-source software, and how OSS developers react to

software vulnerabilities differently compared to their closed-source counterparts. In general,

researchers found no substantial differences between OSS and closed-source software in terms of

the risk and severity of software vulnerabilities (Altinkemer et al., 2008; Payne, 2002; Schryen,

2011), but there was some evidence that the OSS may release patches faster than closed-source

software (Arora et al., 2010; Temizkan et al., 2012). As such, Schryen (2011, p. 139) suggested

that “we should explore other factors rather than asking whether open source or closed source

software leads to higher levels of security.”

The unique nature of OSS challenges some of the assumptions in prior analytical models

for optimal disclosure and patching policies. For example, OSS licenses typically explicitly state

that the licensor provides the work on an “as is” basis, without warranties of any kind. As such,

OSS projects do not financially internalize any customer losses, making it difficult to derive the

optimal disclosure policy from customer losses as proposed by Arora et al. (2008). Similarly,

with code contributed by volunteer developers, it is not straightforward to use the patch

development costs (cf, Cavusoglu et al., 2007) to study patch release policies in OSS because the

costs could be virtually zero in OSS settings. Thus, research on software vulnerabilities in OSS

would require a new conceptual framework beyond the conventional view centered on

commercial software vendors.

Meanwhile, the open source ecosystem has its own unique challenges and considerations

as regards software vulnerabilities. For example, many OSS developers do not prioritize

dependency updates when a new version of the dependencies becomes available (Kula et al.,

11

2018). This is because dependency updates may induce breaking changes. Therefore, this

requires extra migration effort for OSS developers to test and fix any incompatibility issues that

come with the new software dependencies. With inadequate resources and unpaid labor, OSS

developers are often less attentive to dependency management tasks (Bogart et al., 2015; Eghbal,

2020). By the same token, research has shown that OSS project maintainers were less likely to

invest in preemptive security practices, such as security training and audits, and instead relied

heavily on community support to address security issues (Pashchenko et al., 2020).

To summarize, software vulnerabilities in OSS are important, but understudied. Despite

the rich analytical and empirical insights in the software vulnerability literature, it remains

unclear how the security of OSS should be conceptualized and improved. A potentially fruitful

theoretical lens for studying software vulnerabilities in OSS is organizational learning from

security incidents, which we will elaborate on as follows.

Organizational Learning from Security Incidents

Software vulnerabilities and other security incidents often provide opportunities for

organizational learning. In their recent review of how organizations learn from IS incidents,

Mehrizi et al. (2022) developed an integrated conceptual framework with three distinct learning

modes: reflective (i.e., learning from the past for the future), embedded (i.e., learning from the

present for the present), and prospective (i.e., learning from the future for the future). They

observed that this literature has predominantly been concentrated on reflective learning from

incidents, emphasizing post-incident analysis and incident knowledge dissemination as two

important learning practices (see, e.g., Gal-Or & Ghose, 2005; McLaughlin & Gogan, 2018).

These two learning practices are distinct from, yet complementary to each other: post-incident

analysis seeks to identify root causes and extract generalizable lessons from the incident,

whereas incident knowledge dissemination aims to distribute and share incident knowledge

12

across organizational units and boundaries (Mehrizi et al., 2022). In other words, reflective

learning involves a deep reflection of the incident and can take place at the organizational and

interorganizational levels (Majchrzak & Jarvenpaa, 2010; Skopik et al., 2016).

Despite this extensive literature on organizational learning from security incidents, prior

studies were typically contextualized in canonical and well-bounded organizations, such as

commercial firms and governmental agencies. More likely than not, the processes and outcomes

of knowledge creation, retention, and sharing in these organizations will differ from those in

online OSS communities (Faraj et al., 2011; Safadi et al., 2021). For example, whereas

commercial firms often have a dedicated team or department for cybersecurity management and

incident response (Ahmad et al., 2020), most OSS projects do not have the resources and

capacity to include such dedicated security personnel in the projects. Similarly, although

researchers have recognized that learning from security incidents can arise at the

interorganizational level (Mehrizi et al., 2022), there is a paucity of theorizing and evidence on

how such learning may arise in online OSS communities.

In summary, significant gaps remain in our understanding of organizational learning from

security incidents in the OSS context. Our research contributes to this discourse by theorizing

one potential mechanism by which organizational learning and knowledge spillover may

manifest from vulnerability disclosures through software dependencies in the open source

ecosystem.

THEORY DEVELOPMENT

In this section, we develop a framework for understanding knowledge spillovers from

vulnerability disclosures in the open source ecosystem, as depicted in Figure 1. We will argue

that through the mechanism of organizational learning, OSS projects are more likely to identify

and disclose security weaknesses that had been revealed earlier in their direct suppliers’

13

vulnerability disclosures. Specifically, we will explain why the knowledge transfer and learning

would occur across the software supply chain from a supplier to its consumers and how the

criticality of the disclosed software vulnerability from the supplier may moderate such learning

at the interorganizational level.

Figure 1. Conceptual Model

Knowledge Spillovers from Vulnerability Disclosures

When an OSS project discloses a vulnerability, the purpose is first and foremost to increase

public awareness of the specific vulnerability in the software so that its users, including

downstream projects in the software supply chain, can take timely remediation actions, such as

patching or removing the affected software asset, to avoid potential exploits. Beyond this

primary purpose of addressing the incident at hand, vulnerability disclosures can provide

opportunities for learning in other OSS projects. We propose a spillover effect of vulnerability

disclosures: OSS projects are more likely to identify and disclose security weaknesses that were

previously disclosed by their direct OSS suppliers. At the center of our reasoning are two

interrelated mechanisms in vulnerability disclosures and the software supply chains: (1) the

abstraction and codification of technical weaknesses in vulnerability disclosures and (2) the

14

transfer of security knowledge through software dependencies. As we explain in the following,

they are consistent with post-incident analysis and incident knowledge dissemination in

reflective learning from security incidents (Mehrizi et al., 2022).

Vulnerability disclosures from OSS projects as well as other proprietary software vendors

typically involve some degree of knowledge abstraction and codification. Theory and evidence

in the organizational learning literature suggest that abstraction and codification can make

knowledge more readily transferable (Argote, 2013; Zander & Kogut, 1995; Zollo & Winter,

2002). Besides incident-specific and response-oriented information (for example, how attackers

can exploit the vulnerability, what versions of the software are affected, and where to obtain a

patch), it has been a norm in the vulnerability disclosure process for software owners and

security analysts to reflect on the specific vulnerability and use the common weakness

enumeration (CWE) coding scheme to characterize the technical core of the security

vulnerability (Schryen, 2011).7 As a community-developed coding scheme, CWE is intended to

facilitate communication among diverse stakeholders about vulnerabilities and exposures in

computer software. To this point, Boh (2007) has suggested that institutionalized-codification

mechanisms (such as template, database, and standardized methodology) are most suitable for

knowledge sharing among geographically dispersed project-based organizations when the nature

of work is standardized. This is also consistent with Nonaka’s theory of organizational

knowledge creation that “explicit” knowledge is actionable across contexts and accessible

through consciousness (Nonaka & von Krogh, 2009). These codified technical weaknesses in

OSS suppliers’ vulnerability disclosures should help develop abstract, generalizable lessons and

identify systematic causes, as in conventional post-incident analysis.

7 See https://cwe.mitre.org/about/index.html

https://cwe.mitre.org/about/index.html

15

Although codified security knowledge is more easily transferable, the direction of

knowledge transfer will likely be affected by contextual factors within and across organizations

(Argote, 2013). Interorganizational learning and knowledge spillover from a focal organization

to other organizations in the environment have been well documented in prior research in non-

OSS settings, such as commercial corporations and academic research centers (Argote et al.,

2021; Autio et al., 2004; Zollo & Reuer, 2010). Consistent with this literature, we argue that OSS

projects are more likely to acquire knowledge from their direct suppliers. It is important to note

that in the United States alone, there are more than 10,000 vulnerabilities being discovered and

disclosed every year in the National Vulnerability Database. Although these vulnerability

disclosures are released to the public and made available to everyone, it is unlikely that OSS

projects keep track of all these disclosures, especially given their lack of resources and labor

(Geiger et al., 2021). As such, OSS projects would likely pay more attention to vulnerability

disclosures from a narrow set of selected sources. When deciding which sources to prioritize,

OSS projects will most likely prioritize those with which they have a direct relationship. One

apparent choice is the OSS projects they depend on—that is, their direct OSS suppliers. Hansen

(1999) has found that a strong tie between the two parties is often required for transferring

complex knowledge. As a result, OSS projects would be more likely to pay attention to their

suppliers’ vulnerability disclosures and subsequently acquire security-related knowledge from

there. This will increase the likelihood that these consumers will identify and disclose similar

security weaknesses that were previously disclosed by their suppliers.

In summary, with knowledge abstraction and codification in vulnerability disclosures and

software dependencies as channels for knowledge transfer in the OSS ecosystem, we propose:

PROPOSITION 1. OSS consumers are more likely to disclose security weaknesses that
were previously disclosed by their direct OSS suppliers.

16

Moderation by Criticality

Software vulnerabilities have varying degrees of severity, ranging from low to critical. The

information security literature has shown that the severity of a software vulnerability has

significant implications, affecting the timing of vulnerability disclosure (Sen et al., 2020), the

propagation of the vulnerability (Chinthanet et al., 2021), the timeliness of patch release (Arora

et al., 2010), and the efficacy of organizational learning (Ahmed & Lee, 2020).

OSS projects will likely perceive a more profound need for learning when their suppliers

disclose critical software vulnerabilities and better retain the “lessons learned” from these critical

software vulnerabilities (Dahlin et al., 2018; Madsen & Desai, 2010). This is consistent with the

evidence from the organizational learning literature that organizations are more attentive to

learning from errors with relatively severe consequences (Homsma et al., 2009). On this point,

Frese and Keith (2015) provided a clear and compelling justification. In their words:

Errors with strong negative consequences attract attention and indicate
unequivocally that something needs to [be] done; this then leads to learning
because people reflect on and discuss their errors, changing routines and
understanding. Successful actions or errors with small negative consequences
do not indicate a necessity for change. Therefore, errors with small
consequences or those that can be corrected immediately are more easily
overlooked or ignored. (p. 676)

In addition, critical vulnerabilities are more likely to induce external and internal

communications. Externally, the degrees of press coverage and social media discussions should

be higher regarding critical software vulnerabilities in an OSS project (Drupsteen &

Guldenmund, 2014). As such, they are less likely to be omitted or ignored by the downstream

OSS consumer projects. Internally, critical vulnerabilities, especially from their suppliers, are

more likely to promote discussion and reflection among the maintainers of an OSS project. This

should better enable knowledge retention and its subsequent use in identifying similar

vulnerabilities within their own projects (Argote, 2013).

17

In view of the aforementioned, it can be argued that critical software vulnerabilities have

the potential to intensify knowledge transfer, retention, and use. This will moderate the

knowledge spillovers that we proposed earlier.

PROPOSITION 2. The degree of knowledge spillovers as proposed in Proposition 1 will be
more pronounced when the disclosed vulnerabilities from the OSS suppliers are critical.

EMPIRICAL STRATEGY

Data

To test our propositions, we assembled a unique dataset by integrating data from three sources:

the National Vulnerability Database (NVD), Libraries.io, and Google’s open source

vulnerabilities database.

The NVD is the de facto vulnerability disclosure system. Hosted by the U.S. National

Institute of Standards and Technology, it has been the most complete source of public

vulnerability disclosures and used extensively in prior software vulnerability research (e.g.,

Arora et al., 2010; Mitra & Ransbotham, 2015; Ransbotham et al., 2012). Each vulnerability

record in NVD contains a wide variety of information. Table 1 uses the Log4Shell vulnerability

as an example to illustrate some of the key elements available in a vulnerability record in NVD.

Specifically, each vulnerability disclosure in NVD is uniquely identified by a common

vulnerabilities and exposures (CVE) number and comes with a publication date to indicate when

a vulnerability was disclosed to the public. A vulnerability report also often contains a list of

weaknesses based on the CWE coding scheme to characterize the technical roots of the

vulnerability (Schryen, 2011). The severity base score in a vulnerability report is a numerical (0–

10) representation of the severity and risk of the focal security vulnerability assigned by NVD

analysts, following the Common Vulnerability Scoring System (CVSS) industry standard. In

practice, a vulnerability is considered critical when its severity base score is 9 or greater.

18

Table 1. Key Elements in the Log4Shell Vulnerability Report in NVD
CVE Number CVE-2021-44228
Published Date 12/10/2021
Description Apache Log4j2 2.0-beta9 through 2.15.0 (excluding security releases 2.12.2,

2.12.3, and 2.3.1) JNDI [Java Naming and Directory Interface] features used in
configuration, log messages, and parameters do not protect against attacker-
controlled LDAP [Lightweight Directory Access Protocol] and other JNDI-related
endpoints. An attacker who can control log messages or log message parameters
can execute arbitrary code loaded from LDAP servers when message lookup
substitution is enabled. …

Weakness
Enumeration

CWE-20: Improper Input Validation
CWE-400: Uncontrolled Resource Consumption
CWE-502: Deserialization of Untrusted Data
…

Severity Base score: 10.0

The Libraries.io data provide a cross-sectional snapshot of public OSS repositories as of

January 12, 2020 (Katz, 2020).8 Recently, this dataset was used in the Census II report from the

Linux Foundation and the Laboratory for Innovation Science at Harvard to understand the usage

of OSS packages (Nagle et al., 2022). The Libraries.io data contain rich information about

repository-level attributes and statistics, such as programming language and number of

contributors. The most unique aspect of the Libraries.io data is that they aggregate dependency

relationships among OSS projects from many different package managers, yielding over 235

million interdependencies among 33 million repositories. This enabled us to identify supplier–

consumer dyads in the OSS ecosystem. In our study, the OSS suppliers and consumers were

identified at the level of individual repositories. This avoids the issue that an OSS project may

involve multiple repositories and enables us to better capture software dependencies and

incorporate repository-level controls for each project.

To achieve a mapping between the vulnerability records from NVD and the OSS data

from Libraries.io, we relied on Google’s open source vulnerabilities database. This database has

been released and maintained by Google since 2021.9 It provides a crosswalk between CVE

8 https://libraries.io/data
9 See https://opensource.googleblog.com/2021/02/launching-osv-better-vulnerability.html. It is important to note that this

https://libraries.io/data
https://opensource.googleblog.com/2021/02/launching-osv-better-vulnerability.html

19

numbers and OSS package names.

Research Design and Sample Construction

We distinguished two time periods in our research design, using January 12, 2020, when the

Libraries.io data were released, as the cutoff date (Figure 2). We used data from the pre-period

(between 2017-01-01 and 2020-01-12) to construct our sample, detect supplier–consumer

dependencies, and identify disclosed vulnerabilities and weaknesses in OSS suppliers. The OSS

projects and dependencies were version agnostic in our research design (e.g., “Log4j” rather than

“Log4j-2.15.0”). This was to circumvent the complexities associated with analyzing software

versions (Nagle et al., 2022) and make the analysis computationally feasible.10 The OSS

suppliers we considered were OSS artifacts that had a vulnerability disclosure in the pre-period,

and the OSS consumers were OSS artifacts that directly depended on these suppliers in the pre-

period. In other words, our sample was from supplier–consumer dyads that had a direct

dependency, and we omit indirect software dependencies in our study. From this pool of OSS

consumers, we used data from the post-period (between 2020-01-13 and 2022-12-31) to identify

their vulnerability disclosures and technical weaknesses.

database is different from the Open Source Vulnerability Database used in prior research (e.g., Sen et al., 2020). Though both
databases serve similar purposes, the latter was launched in 2004 by Jake Kouhns and shut down in 2016.
10 We found that a versioned dependency network of our sample OSS projects was about 25 times larger than an unversioned
one. Given that our analysis on unversioned supplier–consumer dyads required over 40GB of computer memory, the analysis of
versioned supplier–consumer dyads likely would require at least 1TB of computer memory, assuming that the amount of
computer memory needed grows linearly with the size of the input data.

20

Figure 2. Research Design

Given that a CVE report can have multiple CWE codes, the unit of observations in our

regression analysis was at the level of supplier-CWE-consumer triads. This allowed us to encode

the presence (or absence) of a specific security weakness in an OSS consumer in the post-period

and the presence (or absence) of the weakness in its OSS supplier in the per-period. Figure 3

provides a schematic illustration of our data structure in regression analysis, which, as we

elaborate next, allows us to capture CWE-specific knowledge transfer between supplier–

consumer dyads and control the heterogeneity in CWE codes.

Figure 3. Illustrating the Unit of Observations at the Suppler-CWE-Consumer Level in
Regression Analysis

21

Methodology

With our research design, our analytical objective was to examine whether the technical

weaknesses (i.e., CWE codes) in the consumers’ vulnerability disclosures in the post-period were

the same as the ones in the vulnerability disclosures from their direct suppliers in the pre-period.

Accordingly, we estimated the following regression model:

𝐶𝐶𝑖𝑖,𝑘𝑘 = 𝛽𝛽𝑆𝑆𝑗𝑗,𝑘𝑘 + 𝛾𝛾𝑿𝑿𝑖𝑖 + 𝛿𝛿𝑾𝑾𝑗𝑗 + 𝛼𝛼𝑘𝑘 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑘𝑘,

where i, j, and k denote consumer, supplier, and weakness, respectively. The outcome variable,

𝐶𝐶𝑖𝑖,𝑘𝑘 (CONSUMER DISCLOSES CWE k), was a dummy indicating whether OSS consumer i

reports a type k weakness in the post-period. The main independent variable was 𝑆𝑆𝑗𝑗,𝑘𝑘

(SUPPLIER DISCLOSED CWE k), which was a dummy indicating whether the supplier j

reported a type k weakness in the pre-period. Our primary interest was in the coefficient 𝛽𝛽,

which detected whether 𝑆𝑆𝑗𝑗,𝑘𝑘 was associated with 𝐶𝐶𝑖𝑖,𝑘𝑘. The 𝑿𝑿𝑖𝑖 and 𝑾𝑾𝑗𝑗 were vectors of log-

transformed baseline control variables as of 2020-01-12 from consumer i and supplier i,

respectively. These included AGE (difference, in years, between repository creation date and

2020-01-12), STARS COUNT (number of stars on the repository), CONTRIBUTORS COUNT

(number of unique contributors that have committed to the repository), and DEPENDENTS

COUNT (number of other projects that declared the project as a dependency). These control

variables reflected the likelihood of security vulnerability and the health of the focal OSS

community (Arora et al., 2010; Geiger et al., 2021; Goggins et al., 2021). We also included a

dummy, CRITICAL VULN, in 𝑾𝑾𝑗𝑗 to indicate whether the disclosed vulnerability was critical

(i.e., CVSS base score of 9 or above) for the OSS suppliers. Finally, we incorporated two sets of

fixed effects (FEs) in our empirical model. First, we used CWE FEs, 𝛼𝛼𝑘𝑘, to account for time-

invariant, unobservable characteristics of the weaknesses. Since some weaknesses may be easier

22

to discover or more common than others in OSS development, the CWE FEs would capture and

address these unobservable weakness-specific factors in our estimation. We also included FEs

for the consumer’s programming language, 𝜇𝜇𝑖𝑖.
11 Different programming languages tend to have

distinct security properties (e.g., Go is a memory-safe language while C is not). At the same

time, the norms and standards in software development and maintenance practices vary

depending on the programming languages (Decan et al., 2019). Such language-specific

unobservables would be controlled and absorbed by 𝜇𝜇𝑖𝑖.

Aside from the main model, our Proposition 2 involves a moderation effect. We tested it

by adding an interaction term between 𝑆𝑆𝑗𝑗,𝑘𝑘 and CRITICAL VULN into the main model. A

significant coefficient for the interaction term would suggest that the criticality of the supplier’s

vulnerability can moderate the spillover of security knowledge over software supply chains.

For identification purposes, we further imposed a few restrictions when constructing our

research data. First, we focused on OSS projects hosted on GitHub to obtain relevant control

variables and avoid the potential discrepancy in OSS vulnerability disclosures caused by the

project hosting sites. Second, we limited OSS consumers to those that had not disclosed any

vulnerabilities in the pre-period to avoid potential impacts from such earlier disclosures in the

post-period. Third, we excluded supplier–consumer dyads when the two projects were created by

the same organization, in accordance with the scope of our theorizing of knowledge transfer and

learning at the interorganizational level.12 Fourth and finally, because we identified security

weaknesses through CWE codes in vulnerability disclosures and because the vulnerability

11 We did not include FEs for the supplier’s programming language because in most cases, supplier and consumer are using the
same programming language. The results of our estimation were greatly similar if we included FEs for the supplier’s, instead of
the consumer’s, programming language in our model.
12 For example, “rails/rails” had a dependency on “rails/sprockets,” and as such, the latter was considered as a supplier of the
former. However, we excluded this supplier–consumer dyad because both OSS projects were developed within the same
organization “rails.”

23

disclosures from the suppliers and the consumers are from two different time periods, we limited

our analysis to CWE codes that appear in both pre- and post-periods. This removed new (only in

the post-period) and potentially outdated (only in the pre-period) CWE codes and enabled us to

incorporate the CWE FEs into our empirical model.

In all, our final sample comprised 385,722 supplier–consumer dyads, with 430 unique

suppliers and 288,132 unique consumers. The suppliers collectively disclosed 1,292

vulnerabilities in the pre-period, and the consumers disclosed 865 vulnerabilities in the post-

period. These numbers may seem small, but this was because we purposefully removed certain

suppliers, consumers, supplier–consumer dyads, and vulnerabilities in our empirical analysis, as

we described earlier, to be able to better identify the proposed organizational learning effects.

Also, as we will further elaborate and verify later in our analysis of mechanisms, it is important

to note that these suppliers and consumers did not have the exact same vulnerability because the

vulnerabilities of the suppliers and consumers came from different CVE reports.13 Table 2

provides a summary of the data statistics for our variables.

13 To see this, consider the Log4Shell vulnerability. Even though Log4j is widely used and Log4Shell impacted virtually all
Log4j’s consumers, none of these consumers will have a CVE report on the Log4Shell vulnerability because the CVE assignment
rules prohibit duplicated CVE reports for the same vulnerability. Since we identified CWEs from suppliers’ and consumers’ CVE
reports and the suppliers and consumers will not have CVE reports for the exact same vulnerability, our design is robust against
the concern that the CWE codes shared by the supplier–consumer dyads may due to the diffusion of software vulnerabilities.

24

Table 2. Data Statistics

Variable Dummy Obs. Mean SD Min Max
CONSUMER DISCLOSES CWE k (i.e., 𝐶𝐶𝑖𝑖,𝑘𝑘) Yes 29,644,056 0.00 0.01 0 1
SUPPLIER DISCLOSED CWE k (i.e., 𝑆𝑆𝑗𝑗,𝑘𝑘) Yes 29,644,056 0.03 0.16 0 1
CONSUMER AGE No 29,644,056 3.23 2.14 0 12
CONSUMER STARS COUNT No 29,644,056 133.25 1514.87 0 155566
CONSUMER CONTRIBUTORS COUNT No 29,644,056 6.10 30.57 0 2647
CONSUMER DEPENDENTS COUNT No 29,644,056 31.25 1555.12 0 451563
SUPPLIER AGE No 29,644,056 8.27 2.03 1 12
SUPPLIER STARS COUNT No 29,644,056 25359.58 22889.06 0 137880
SUPPLIER CONTRIBUTORS COUNT No 29,644,056 316.35 186.04 0 1247
SUPPLIER DEPENDENTS COUNT No 29,644,056 54866.82 53343.54 0 151954
CRITICAL VULN Yes 29,644,056 0.29 0.45 0 1

Econometrically, our data were cross-sectional. Estimating causal relationships from

cross-sectional data is typically difficult because of the issue of reverse causality and the impact

of unobservables. However, it is important to note that the “treatment” variable, 𝑆𝑆𝑗𝑗,𝑘𝑘, and the

“outcome” variable, 𝐶𝐶𝑖𝑖,𝑘𝑘, in our design came from two different time periods. This should

alleviate the concern about reverse causality. Furthermore, 𝑆𝑆𝑗𝑗,𝑘𝑘 was likely exogenous in our

regression because, for the most part, OSS consumers have no control over whether, when, or

what security vulnerabilities their OSS suppliers disclose. One may have the concern that OSS

consumers could affect their OSS suppliers’ vulnerability disclosures by reporting security bugs

to their suppliers in the pre-period. As we will show, there is no substantial evidence that the

OSS consumers in our sample contributed to their suppliers in the pre-period. More importantly,

if they did, this in theory would attenuate our estimated 𝛽𝛽 coefficient because, having been

attentive to such security weaknesses in the pre-period, these OSS consumers would be less

likely to develop code with these technical weaknesses in the first place, making it more difficult

for us to detect an effect of 𝑆𝑆𝑗𝑗,𝑘𝑘 and yielding a more conservative estimate for the 𝛽𝛽 coefficient.

25

RESULTS

Main Results

Table 3 reports the results of our estimation. From columns 1 and 2, we find that the coefficients

of 𝑆𝑆𝑗𝑗,𝑘𝑘 are positive and significant in models without and with control variables. Therefore,

Proposition 1 is supported, indicating that OSS projects are more likely to identify and disclose

security weaknesses that were previously disclosed by their direct OSS suppliers. The results

from column 3 show a positive and significant coefficient for 𝑆𝑆𝑗𝑗,𝑘𝑘 * CRITICAL VULN. This

supports Proposition 2 and suggests that the criticality of suppliers’ vulnerability moderates the

knowledge spillover. Interestingly, the coefficient of the interaction term (0.451) is nearly three-

quarters that of the coefficient of 𝑆𝑆𝑗𝑗,𝑘𝑘 (0.605). This means that in both statistical and practical

aspects, the disclosure of critical vulnerabilities by OSS suppliers induces a significantly higher

degree of knowledge spillovers to consumers when compared to the disclosure of noncritical

vulnerabilities.

26

Table 3. Main Results

DV: 𝐶𝐶𝑖𝑖,𝑘𝑘 (CONSUMER DISCLOSES CWE k) (1) (2) (3)
Main effect only Full model Moderation

𝑆𝑆𝑗𝑗,𝑘𝑘 (SUPPLIER DISCLOSED CWE k) 1.522*** 0.702** 0.605*
(0.340) (0.261) (0.280)

Log CONSUMER AGE -0.247 -0.246
 (0.274) (0.274)

Log CONSUMER STARS COUNT 0.481*** 0.481***
 (0.046) (0.046)

Log CONSUMER CONTRIBUTORS COUNT 0.655*** 0.654***
 (0.096) (0.095)

Log CONSUMER DEPENDENTS COUNT -0.084** -0.083**
 (0.032) (0.031)

Log SUPPLIER AGE 0.208 0.217
 (0.176) (0.177)

Log SUPPLIER STARS COUNT 0.105 0.106
 (0.068) (0.068)

Log SUPPLIER CONTRIBUTORS COUNT -0.231** -0.232**
 (0.073) (0.074)

Log SUPPLIER DEPENDENTS COUNT -0.147*** -0.146***
 (0.034) (0.033)

CRITICAL VULN -0.082 -0.187*
 (0.083) (0.099)

𝑆𝑆𝑗𝑗,𝑘𝑘 × CRITICAL VULN 0.451***
 (0.098)

CWE FEs Yes Yes Yes
Consumer language FEs Yes Yes Yes
Pseudo R-squared 0.104 0.332 0.333
Number of unique CWEs 78 78 78
Observations 29644056 29644056 29644056
Notes: Robust standard errors (clustered at FE variables) are shown in parentheses. *** p < 0.01; ** p < 0.05; * p <
0.1

Alternative Specifications and Robustness Checks

We implemented two different approaches to assess the robustness of these main results. First,

we considered an alternative model specification that included three-way FEs for consumer OSS,

supplier OSS, and CWE codes. We did not use this in our main analysis because the three-way

FEs would significantly reduce the number of observations in our cross-sectional observations.

27

More importantly, with this specification, we would not be able to estimate the moderation effect

because the moderator, along with all other control variables, would be absorbed by the OSS

FEs. Nevertheless, this specification could be useful to address OSS-level unobservables in our

estimation. Column 1 of Table 4 shows the results from this three-way FE model. The coefficient

of 𝑆𝑆𝑗𝑗,𝑘𝑘 remains positive (0.755, p < 0.05) and has a similar magnitude to the one in column 2 of

Table 3 (0.702) without the OSS-level FEs in the estimation. This suggests that the control

variables in our main analysis were adequate, and OSS-level unobservables may not be a

primary concern in our analysis.

Second, we applied the coarsened exact matching (CEM) procedure to refine the

regression sample in our main analysis (Iacus et al., 2011, 2012). Specifically, we matched 𝑆𝑆𝑗𝑗,𝑘𝑘

based on the control variables. Our CEM procedure used Sturges’ rule for automatic bin

construction, coarsened the values in each of these control variables into different strata, and

retained only strata that had both treated (𝑆𝑆𝑗𝑗,𝑘𝑘 = 1) and control (𝑆𝑆𝑗𝑗,𝑘𝑘 = 0) observations. Using

the matched sample from this CEM procedure, we reestimated our empirical models and

reported the results in columns 2 and 3 of Table 4. Overall, we found that the results with CEM

were qualitatively similar to the main results reported earlier.

28

Table 4. Robustness Checks

DV: 𝐶𝐶𝑖𝑖,𝑘𝑘 (CONSUMER DISCLOSES CWE k) (1) (2) (3)
Three-way FEs CEM full model CEM moderation

𝑆𝑆𝑗𝑗,𝑘𝑘 (SUPPLIER DISCLOSED CWE k) 0.755** 0.624*** 0.569***
(0.325) (0.192) (0.212)

Log CONSUMER AGE -0.262 -0.262
 (0.401) (0.401)

Log CONSUMER STARS COUNT 0.540*** 0.540***
 (0.080) (0.080)

Log CONSUMER CONTRIBUTORS COUNT 0.588*** 0.587***
 (0.152) (0.152)

Log CONSUMER DEPENDENTS COUNT -0.128*** -0.128***
 (0.036) (0.036)

Log SUPPLIER AGE 0.253** 0.254**
 (0.125) (0.125)

Log SUPPLIER STARS COUNT 0.026 0.026
 (0.071) (0.071)

Log SUPPLIER CONTRIBUTORS COUNT -0.104 -0.104
 (0.078) (0.078)

Log SUPPLIER DEPENDENTS COUNT -0.149*** -0.149***
 (0.029) (0.029)

CRITICAL VULN 0.101 0.068
 (0.108) (0.121)

𝑆𝑆𝑗𝑗,𝑘𝑘 × CRITICAL VULN 0.254***
 (0.075)

Consumer FEs Yes No No
Supplier FEs Yes No No
CWE FEs Yes Yes Yes
Consumer language FEs Yes Yes Yes
Coarsened exact matching No Yes Yes
Pseudo R-squared 0.148 0.389 0.389
Number of unique CWEs 78 76 76
Observations 77922 28840176 28840176
Notes: Robust standard errors (clustered at FE variables) are shown in parentheses. In column 1, coefficients for
control variables and the interaction term are not available because consumer- and supplier-level FEs absorb their
variations. In columns 2 and 3, the number of unique CWEs and observations are different from our main results
because the set of valid CWEs (that is, appeared in the pre- and post-periods) changed as a result of CEM. *** p <
0.01; ** p < 0.05; * p < 0.1

Analysis of Mechanisms and Alternative Explanations

To complement our main results, we conducted a set of additional analyses to ascertain that our

29

proposed theoretical mechanism—that is, organizational learning over software supply chains

from OSS suppliers’ vulnerability disclosures—is plausible in explaining the observed

knowledge spillovers. Table 5 summarizes these additional analyses and their principal results,

which we discuss as follows.

Table 5. Analysis of Mechanisms

Alternative explanations/mechanisms Executed tests Results
1. OSS projects may be learning from

nonsuppliers, and as such, the
observed main and moderation
effects would exist even without
software dependencies.

Implement placebo tests and
label CWEs based on alternative
vulnerability disclosures
published around the same time
rather than the ones from the
suppliers/consumers.

The placebo results are
insignificant, suggesting
that software
dependencies play a key
role in the learning
process.

2. The suppliers and consumers could
be in the same application categories
so that the consumers may learn from
others in the same category rather
than from their suppliers.

Identify project topics and
reestimate the empirical models
using only supplier–consumer
dyads that had no overlapping
topics.

Results show similar
patterns and magnitude of
coefficients as the main
results reported earlier.

3. The vulnerabilities in the consumer
OSS projects may be the same as
their suppliers’ vulnerabilities—that is,
the observed main and moderation
effects were the diffusion of the
suppliers’ original vulnerabilities,
rather than the results of learning.

Verify whether consumers’
vulnerability disclosures
mentioned the supplier’s CVE
number.

We did not find any such
instances in our sample.

4. It could be third-party security
researchers or random volunteer
developers, rather than the core
members of the consumer OSS
project, who learned from the
supplier’s vulnerability disclosure.

Conduct qualitative review and
coding for the vulnerability
discoverers in 30 randomly
selected consumer OSS projects.

Most of the discoverers
were core members in the
consumer OSS projects,
suggesting that learning
took place within consumer
OSS projects.

5. The core members in the consumer
OSS projects may contribute to their
suppliers’ projects and learn from this
experience, rather than through
suppliers’ vulnerability disclosures.

Extend the preceding qualitative
analysis to examine whether and
how the core members in the
consumer OSS projects engaged
in their suppliers’ projects.

Very few such cases,
suggesting that learning by
contributing was unlikely
the main driver of the
knowledge spillovers.

Role of Software Dependencies

Our theorizing hinges on software dependencies as channels for knowledge transfer. As such, it

is of critical importance to verify if that is indeed the case. A reasonable and plausible alternative

explanation is that OSS consumers may be learning from nonsuppliers, and as such, software

dependencies may not be relevant. To address this concern, we examined the role of software

dependencies through placebo tests. The rationale of our placebo tests is simple: if the suppliers’

30

vulnerability disclosures indeed triggered knowledge spillover and organizational learning on the

consumers’ side, we should not detect a significant coefficient for 𝑆𝑆𝑗𝑗,𝑘𝑘 if the 𝑆𝑆𝑗𝑗,𝑘𝑘 (𝐶𝐶𝑖𝑖,𝑘𝑘) variable

does not reflect the security weaknesses of the supplier (consumer).

Following this logic, we implemented two placebo tests, one with a placebo 𝑆𝑆𝑗𝑗,𝑘𝑘 and the

other with a placebo 𝐶𝐶𝑖𝑖,𝑘𝑘. To derive these placebo quantities, for each vulnerability disclosure

from the supplier and consumer we randomly selected another vulnerability disclosure that was

published around the same time and used the CWE codes in this “false” vulnerability disclosure

to label 𝑆𝑆𝑗𝑗,𝑘𝑘 in the first placebo test and 𝐶𝐶𝑖𝑖,𝑘𝑘 in the second one. Table 6 reports the results from

these two placebo tests. We find that the coefficients of 𝑆𝑆𝑗𝑗,𝑘𝑘 and the 𝑆𝑆𝑗𝑗,𝑘𝑘× CRITICAL VULN

interaction term are consistently insignificant. This provides evidence that the weaknesses

identified and disclosed by OSS consumers are driven by the weaknesses identified and

disclosed by their OSS suppliers. In other words, software dependencies indeed play an essential

role in the knowledge spillover process.

31

Table 6. Placebo Tests

 Placebo supplier CWEs Placebo consumer CWEs

DV: 𝐶𝐶𝑖𝑖,𝑘𝑘 (CONSUMER DISCLOSES CWE k) (1) (2) (3) (4)
Full model Moderation Full model Moderation

𝑆𝑆𝑗𝑗,𝑘𝑘 (SUPPLIER DISCLOSED CWE k) 0.119 0.146 0.079 0.015
(0.267) (0.278) (0.224) (0.210)

Log CONSUMER AGE -0.214 -0.214 -0.129 -0.129
(0.251) (0.251) (0.268) (0.267)

Log CONSUMER STARS COUNT 0.474*** 0.474*** 0.488*** 0.488***
(0.048) (0.048) (0.040) (0.040)

Log CONSUMER CONTRIBUTORS COUNT 0.674*** 0.674*** 0.655*** 0.655***
(0.099) (0.099) (0.117) (0.116)

Log CONSUMER DEPENDENTS COUNT -0.086*** -0.086*** -0.094*** -0.093***
(0.027) (0.027) (0.030) (0.030)

Log SUPPLIER AGE 0.021 0.019 -0.133 -0.130
(0.227) (0.226) (0.292) (0.289)

Log SUPPLIER STARS COUNT 0.112** 0.112** 0.119* 0.119*
(0.055) (0.056) (0.065) (0.065)

Log SUPPLIER CONTRIBUTORS COUNT -0.239*** -0.238*** -0.253*** -0.254***
(0.052) (0.053) (0.088) (0.089)

Log SUPPLIER DEPENDENTS COUNT -0.159*** -0.160*** -0.163*** -0.162***
(0.033) (0.034) (0.031) (0.030)

CRITICAL VULN -0.068 -0.046 -0.137 -0.173*
(0.071) (0.097) (0.091) (0.091)

𝑆𝑆𝑗𝑗,𝑘𝑘 × CRITICAL VULN -0.146 0.297
 (0.173) (0.223)

CWE FEs Yes Yes Yes Yes
Consumer language FEs Yes Yes Yes Yes
Pseudo R-squared 0.328 0.328 0.312 0.312
Number of unique CWEs 75 75 81 81
Observations 28804650 28804650 31228011 31228011
Notes: Robust standard errors (clustered at FE variables) are shown in parentheses. The number of unique CWEs
and observations are different from our main results because the set of valid CWEs (that is, appeared in the pre- and
post-periods) changed as we modified the CWEs in the vulnerability disclosures from the suppliers/consumers. *** p
< 0.01; ** p < 0.05; * p < 0.1

Similarity of Application Domains in Supplier and Consumer OSS

A related possibility is that OSS consumers may merely pay attention to and learn from other

OSS projects in the same application domains. If OSS consumers and suppliers tend to belong to

32

the same domains, there is a risk that our results may conflate software dependencies with

domain similarity. To investigate this alternative explanation that domain similarity may be

driving the knowledge spillovers, we followed the recent software engineering literature that

categorizes OSS projects and identifies similar OSS projects through the topics of their GitHub

repositories (Izadi et al., 2021; Sharma et al., 2017). The rationale here is that if we could obtain

topic labels for each of the supplier and consumer OSS in our sample, we can easily remove

supplier–consumer dyads that have overlapped topics and reestimate our empirical models using

the subsample, which presents no domain similarity in any supplier–consumer dyads.

There are two potential approaches to obtaining OSS topics. The first approach is to use

the topic labels provided by the project owners. Since 2017, GitHub has allowed users to specify

the topics of their own OSS repositories.14 Given that project owners likely have the best

knowledge about the nature and domain of their own projects, topic labels specified by them

should provide the best characterization of their OSS. The issue with this approach is that many

project owners have not specified topic labels for their OSS repositories. Therefore, another

approach to obtaining topic labels is by analyzing the description of a project. On GitHub,

project owners often (but not always) include a README file in their OSS repositories to

communicate important information about their projects.15 Prior studies have applied machine

learning methods, such as topic modeling or multilabel classification, to predict topics from OSS

projects’ README files (e.g., Izadi et al., 2021; Sharma et al., 2017). These machine learning

methods are helpful for deriving topic labels, especially when the project owners do not specify

the topics of their GitHub repositories.

We consider both approaches in this analysis. In our original sample of 288,562 OSS

14 https://github.blog/2017-01-31-introducing-topics/
15 https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-
readmes

https://github.blog/2017-01-31-introducing-topics/
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes

33

projects, 175,384 (60.7%) had topic labels specified by their owners. Beyond these projects, we

implemented the state-of-the-art machine learning procedure proposed by Izadi et al. (2021) to

predict and obtain topic labels for additional 51,533 OSS projects that did not have owner-

specified topics but had a README file with an English-based description (see Appendix A for

details of this topic prediction procedure).

After removing supplier–consumer dyads that had overlapped topics, the number of

dyads in our sample reduced from 385,722 in our original sample to 192,505 when considering

only topic labels specified by the project owner and 234,539 when considering topic labels

specified by the project owner and predicted from README files. Table 7 reports the empirical

results estimated using these subsamples. Overall, these results are consistent with those in our

main analysis and show similar patterns and magnitude for the coefficients of 𝑆𝑆𝑗𝑗,𝑘𝑘 and the 𝑆𝑆𝑗𝑗,𝑘𝑘×

CRITICAL VULN interaction term. This suggests that domain similarity was not a plausible

explanation for the observed knowledge spillovers, and consumers indeed learned from their

suppliers rather than from OSS projects in the same application domains.

34

Table 7. Results from Supplier–Consumer Dyads without Overlapped Topics

Sources of topic labels Specified by project owner Specified by project owner and
predicted from README file

DV: 𝐶𝐶𝑖𝑖,𝑘𝑘 (CONSUMER DISCLOSES CWE k) (1) (2) (3) (4)
Full model Moderation Full model Moderation

𝑆𝑆𝑗𝑗,𝑘𝑘 (SUPPLIER DISCLOSED CWE k) 0.719*** 0.636*** 0.710*** 0.628**
(0.150) (0.188) (0.202) (0.233)

Log CONSUMER AGE -0.166 -0.166 -0.104 -0.105
(0.346) (0.346) (0.279) (0.279)

Log CONSUMER STARS COUNT 0.498*** 0.498*** 0.492*** 0.492***
(0.051) (0.051) (0.037) (0.037)

Log CONSUMER CONTRIBUTORS COUNT 0.694*** 0.691*** 0.659*** 0.657***
(0.130) (0.128) (0.112) (0.110)

Log CONSUMER DEPENDENTS COUNT -0.107*** -0.105*** -0.099*** -0.098***
(0.023) (0.023) (0.020) (0.020)

Log SUPPLIER AGE 0.150 0.162 0.074 0.083
(0.118) (0.119) (0.186) (0.188)

Log SUPPLIER STARS COUNT 0.019 0.015 0.050 0.048
(0.118) (0.118) (0.105) (0.106)

Log SUPPLIER CONTRIBUTORS COUNT -0.126 -0.120 -0.198* -0.194
(0.079) (0.079) (0.106) (0.106)

Log SUPPLIER DEPENDENTS COUNT -0.111* -0.110* -0.086 -0.085
(0.055) (0.054) (0.052) (0.051)

CRITICAL VULN -0.050 -0.159* -0.038 -0.134
(0.077) (0.086) (0.098) (0.112)

𝑆𝑆𝑗𝑗,𝑘𝑘 × CRITICAL VULN 0.450*** 0.414**
 (0.105) (0.149)

CWE FEs Yes Yes Yes Yes
Consumer language FEs Yes Yes Yes Yes
Pseudo R-squared 0.346 0.347 0.331 0.331
Number of unique CWEs 68 68 68 68
Observations 12915512 12915512 15729760 15729760
Notes: Robust standard errors (clustered at FE variables) are shown in parentheses. The number of unique CWEs
and observations are different from our main results because the set of valid CWEs (that is, appeared in the pre- and
post-periods) changed as we restricted this analysis to supplier–consumer dyads that had no overlapped topics. *** p
< 0.01; ** p < 0.05; * p < 0.1

Knowledge Spillovers vs. Diffusion of Software Vulnerabilities

Another valid concern is that the vulnerability discovered in an OSS consumer may be the result

of its supplier’s vulnerability. In other words, what we observed could be merely the diffusion of

35

software vulnerabilities rather than knowledge transfer and organizational learning. Although a

vulnerability does spread through software supply chains, it is important to note that the spread

of a vulnerability will not lead to multiple CVE numbers. This is because only the upstream

software in which the vulnerability originated should be assigned a CVE number.16 As such, the

vulnerabilities disclosed by the consumer OSS were unlikely to be the same as those disclosed

by their upstream suppliers. Since we used CVE numbers to differentiate vulnerability

disclosures and the vulnerability disclosures from the suppliers and consumers in our sample all

had different CVE numbers, our empirical design should automatically avoid the threat that the

supplier–consumer dyads were having the exact same software vulnerabilities. We nonetheless

verified this potential threat by examining whether any of the vulnerability disclosures from the

OSS consumers in our sample had mentioned or made a reference to their respective supplier’s

CVE number. As expected, we did not find any such instances.

Vulnerability Discoverers

We conducted a qualitative review and coding to address another alternative explanation: it may

be some third-party OSS users or security researchers who learned from the suppliers’

vulnerability disclosures and helped identify and report the vulnerabilities to the consumer OSS

projects. In that case, we could still observe the spillover effect from vulnerability disclosures,

but the mechanism would be different from organizational learning as we proposed. We

investigated this alternative explanation by considering 30 randomly selected vulnerability

disclosures from our sample’s OSS consumers in the post-period. We manually reviewed their

vulnerability disclosures on the NVD website. We traced back to their GitHub commits, issues,

and pull requests to identify how the vulnerabilities were initially discovered, and more

16 For CVE assignment rules, see https://www.cve.org/ResourcesSupport/AllResources/CNARules#section_7_assignment_rules.

https://www.cve.org/ResourcesSupport/AllResources/CNARules#section_7_assignment_rules

36

importantly, who discovered and reported the vulnerabilities.

We labeled each of the vulnerability discoverers in one of the following categories: core

member, peripheral contributor, or security researcher. Consistent with Crowston et al. (2006),

a “core member” is a person affiliated with the OSS project or who makes repeated and

numerous contributions in the development and maintenance of the software. A peripheral

contributor, meanwhile, is an external software developer or user who is not affiliated with the

project but makes infrequent or episodic contributions to the OSS project by reporting or fixing

issues in the software (Barcomb et al., 2020). Finally, a security researcher is an external,

independent actor who specializes in cybersecurity topics and practices.17 To be able to label

these discoverers, we systematically reviewed their GitHub user profiles, public code

repositories, and patterns of engagement with the focal OSS project in which they discovered the

vulnerability. The organizational learning mechanism is more likely if most of the vulnerabilities

were discovered by the core members of the OSS projects. On the other hand, if most of the

vulnerabilities were discovered by peripheral contributors or security researchers, our theorized

mechanism based on knowledge transfer between an OSS supplier and its OSS consumer is less

likely to be valid.

Two researchers worked independently on this qualitative exercise. The intercoder

agreement from the initial round of coding was 0.9 (27/30; Cohen’s kappa = 0.78; Cronbach’s

alpha = 0.84), suggesting a substantial degree of internal consistency. All disagreements were

resolved in the second round. The results of this exercise are shown in Table B1 in Appendix B.

Among the 30 vulnerabilities, we found that 20 were discovered by core members of the OSS

projects, five by peripheral contributors, and five by security researchers. This means that

17 OSS projects may have security experts on the team. For the purpose of this qualitative analysis, if the security expert is a
member of the OSS project, we label them as a core member rather than a security researcher.

37

although peripheral contributors and security researchers can and will play a role in the discovery

of software vulnerabilities in OSS projects, such external actors were unlikely to be the principal

driver of the knowledge spillovers we observed in our main results because most of these

vulnerabilities were discovered by project core members.

Learning by Contributing

It is common for OSS developers to affiliate with or contribute to multiple OSS projects.

Therefore, it is possible that the core members who discovered the security vulnerabilities in

their own projects were also contributors to their respective supplier projects. Consistent with the

notions of “learning by contributing” (Nagle, 2018) and “learning from experience” (Boh et al.,

2007), this approach would allow these OSS developers to gain firsthand knowledge about the

security weaknesses in the supplier projects, and as a result, the supplier’s vulnerability

disclosures may not be necessary to initiate knowledge spillovers.

Given that supplier vulnerability disclosures are an essential pillar in our theoretical

development, it is imperative for us to assess this alternative learning-by-contributing

explanation. To this end, we investigated whether and how the 20 core members identified in our

qualitative analysis contributed to their supplier projects. The results, reported in Table B2 in

Appendix B, reveal that such instances are uncommon, although they did happen in a couple of

these cases. This suggests that compared with the learning by contributing mechanism, the

vulnerability disclosures from the suppliers were likely a more salient driver for the knowledge

spillovers that we observed in our main results.

Sum of Evidence

In summary, our findings suggest a hitherto unexplored phenomenon of knowledge spillovers

from supplier projects to consumer projects in the OSS ecosystem. These findings are robust to

various alternative model specifications. Analyzing the underlying mechanisms, the evidence

38

shows that software dependencies are critical in effectuating knowledge spillovers, which are not

explained by the domain similarity between supplier and consumer projects. Our qualitative

analyses further reveal that the vulnerability discoverers were mostly the core members of the

consumer OSS projects rather than third-party OSS developers or security researchers.

Consistent with our theorizing, this suggests that security knowledge was indeed acquired by the

consumer OSS project teams. We also found that most of these core members were not

contributors to the supplier projects. This implies that members of consumer projects learned

about security knowledge from their suppliers’ public vulnerability disclosures rather than from

direct experience working in the supplier projects. Taken together, we recognize and

acknowledge that there could be multiple causal pathways leading to the observed knowledge

spillovers (such as security researchers, peripheral contributors, and learning by contributing),

and as a result, the true effect size might be smaller than the model suggests. Nevertheless, the

empirical evidence collectively suggests that organizational learning from vulnerability

disclosures through software supply chains was a more plausible and salient mechanism

compared to the alternatives.

DISCUSSION AND CONCLUSION

OSS is an integral part of modern digital infrastructure. The growing number of OSS

vulnerabilities and their adverse impacts on digital sovereignty are confronting us more than ever

with the need to better understand and enhance open source security. Our research provides

novel theoretical and empirical insights into the positive knowledge spillovers of vulnerability

disclosures in the OSS ecosystem. That is, when an OSS project (i.e., a supplier) discloses a

software vulnerability, the security knowledge will be transferred through software supply chains

to downstream OSS projects (i.e., consumers) and enable the latter group to better identify new

vulnerabilities with similar technical roots in their own code repositories. We further

39

demonstrate that knowledge spillover is moderated by the severity of supplier’s vulnerability in

which critical vulnerability, compared to noncritical vulnerability, yields nearly twice the effect

size in inducing knowledge spillover.

Theoretical Contributions

This study makes three theoretical contributions. Our first contribution is to view open source

security from the perspective of software supply chains. This perspective sheds light on a

theoretically important relationship among OSS projects based on software dependencies,

leading to the distinction between suppliers and consumers in the OSS ecosystem. Prior research

has highlighted the issues of task interdependencies and developer interdependencies within an

OSS project and explained how routines can be a coordination mechanism in OSS development

(Lindberg et al., 2016). Our notion of software supply chains across OSS projects expands our

understanding of interdependencies in OSS development from the task and developer levels to

the artifact level. This gives rise to new opportunities to examine issues related to collaboration,

learning, and knowledge sharing and reuse across OSS projects in their software supply chains.

Second, we developed a theory of open source security. Though OSS development and

information security are both enduring topics in IS research, the intersection of the two has

received hardly any direct attention in IS scholarship. We draw on organizational learning theory

to explain why and how security knowledge in an OSS project’s vulnerability disclosure can spill

over to its downstream OSS consumers, enabling the latter to better discover software

vulnerabilities with similar technical roots in their own projects (Mehrizi et al., 2022). The core

of our theoretical development is the abstraction and codification of security weaknesses found

in vulnerability disclosures and the transfer and reuse of security knowledge through the channel

of software dependencies. We further suggest that knowledge spillover is moderated by the

severity of the suppliers’ vulnerabilities, whereby critical vulnerabilities would strengthen the

40

spillover effect. Our empirical analysis supports the proposed knowledge spillover and

organizational learning through software supply chains, as well as the moderation role of the

criticality of the supplier’s vulnerability in the OSS ecosystem.

Finally, this research adds to the organizational learning literature. In developing our

theoretical framework, we emphasized how OSS projects benefit from their suppliers. As

illustrated in Table 8, our focus is on learning activities at the collective level in noncanonical

organizations (i.e., online communities). This is an emerging and distinct form of organizational

learning. The existing organizational learning literature tends to focus on learning in canonical

and well-bounded organizations (i.e., corporations and institutions) at the individual and

collective level (Majchrzak & Jarvenpaa, 2010; Owen-Smith & Powell, 2004) or learning in

online communities at the individual level (Hwang et al., 2015). How one online community

learns from another has received little direct attention in the organizational learning literature.

We present one such case in the context of securing OSS projects.

Table 8. Taxonomy of Organizational Learning Research
 Organizational type

Canonical / bounded Noncanonical / unbounded
Level of
analysis

Individual Knowledge sharing among individuals
within or across corporations and
institutions.

For example, homeland security
professionals from different agencies
share information to resolve security
threats (Majchrzak & Jarvenpaa, 2010).

Knowledge sharing among
individuals in an online community.

For example, individuals in an
online community share knowledge
with others who have similar
interests (Hwang et al., 2015).

Collective Knowledge sharing among corporations
and institutions.

For example, biotechnology firms in
Boston improve their innovation
performance through an industrial
alliance (Owen-Smith & Powell, 2004).

Knowledge sharing among different
online communities.

For example, OSS projects share
security knowledge to identify
software vulnerabilities (this study).

Practical Implication

Our findings regarding knowledge spillovers from vulnerability disclosures have important

41

practical and policy implications for open source security. While prior research focuses on the

considerations of vulnerability disclosure for proprietary software vendors (Arora et al., 2010;

Mitra & Ransbotham, 2015; Sen et al., 2020), our findings underscore the necessity of

vulnerability disclosure for OSS projects and show the additional benefits of vulnerability

disclosure to the security of software supply chains. In particular, an effective strategy to

improve the security of OSS projects is to learn from their suppliers’ vulnerabilities. From this

perspective, OSS projects should be encouraged, even incentivized, to disclose their security

vulnerabilities after the vulnerabilities are patched as part of their risk management routines

(Germonprez et al., 2021). After OSS project teams discover and fix a security-related issue, a

public disclosure about the existence of the vulnerability is beneficial to the security of the OSS

ecosystem, even if the vulnerability has a lower severity. This is because by releasing an official

vulnerability disclosure, the focal OSS project would be able to better retain the security

knowledge from this experience through knowledge abstraction and codification. In addition, it

will facilitate downstream OSS consumers in identifying security weaknesses of the same nature

in their projects.

Limitations and Future Research

Our work has limitations. First, aside from the criticality of the vulnerability, we did not consider

other contingencies that may affect knowledge spillover from OSS projects’ vulnerability

disclosures. This is to maintain the focus and parsimony of our theory (Weber, 2003).

Nevertheless, it is likely that there are other factors at the levels of the platform, OSS project, or

individual developers that can facilitate or hinder the degree of knowledge spillovers in our

setting. Future research could extend our theoretical framework, with consideration of these

contextual factors to broaden the understanding of the contingencies in knowledge spillovers and

their boundary conditions.

42

Second, we were not able to examine the temporal dynamics of learning in OSS projects

owing to the nature of our cross-sectional data. As Argote et al. (2021) pointed out,

“organizations vary in the rate at which they learn” (p. 5399). OSS projects may have different

learning curve patterns based on their projects’ complexity, maturity, and popularity. Therefore,

future researchers with access to panel data could extend our theoretical framework to explain

the temporal dynamics of the spillover of security knowledge in vulnerability disclosures.

Third, for conceptual simplicity and computational feasibility, we restricted our

theoretical development and empirical analysis to the knowledge transfer from suppliers to their

direct consumers and unversioned software dependencies. However, a case can be made that the

knowledge transfer could go beyond one level of dependencies and reach all downstream OSS

projects. Similarly, the consideration of versioned software dependencies could potentially reveal

more insights into the nature and history of the supplier–consumer relationship. We welcome

future research that may relax these restrictions.

Finally, we limited our empirical analysis to a sample of OSS projects on GitHub to

alleviate platform-specific heterogeneity and unobservables. Although GitHub is by far the most

popular platform for OSS development and has been used in much OSS research (e.g., Chen et

al., 2022; Lin & Maruping, 2022; Lindberg et al., 2016), there exist many other similar

platforms, such as Bitbucket, GitLab, and SourceForge. Future investigators may consider OSS

projects on other (or multiple) platforms to examine the generalizability of our theory.

REFERENCES

Ahmad, A., Desouza, K. C., Maynard, S. B., Naseer, H., & Baskerville, R. L. (2020). How
integration of cyber security management and incident response enables organizational
learning. Journal of the Association for Information Science and Technology, 71(8), 939–
953.

Ahmed, A., & Lee, B. (2020). Organizational learning on bug bounty platforms. AMCIS 2020
Proceedings.
https://aisel.aisnet.org/amcis2020/info_security_privacy/info_security_privacy/33

43

Alberts, C. J., Dorofee, A. J., Creel, R., Ellison, R. J., & Woody, C. (2011). A systemic approach
for assessing software supply-chain risk. 2011 44th Hawaii International Conference on
System Sciences, 1–8.

Altinkemer, K., Rees, J., & Sridhar, S. (2008). Vulnerabilities and patches of open source
software: An empirical study. Journal of Information System Security, 4(2), 3–25.

Argote, L. (2013). Organizational Learning: Creating, Retaining and Transferring Knowledge
(2nd ed.). Springer.

Argote, L., Lee, S., & Park, J. (2021). Organizational learning processes and outcomes: Major
findings and future research directions. Management Science, 67(9), 5399–5429.

Arora, A., Krishnan, R., Telang, R., & Yang, Y. (2010). An empirical analysis of software
vendors’ patch release behavior: Impact of vulnerability disclosure. Information Systems
Research, 21(1), 115–132.

Arora, A., & Telang, R. (2005). Economics of software vulnerability disclosure. IEEE Security
& Privacy, 3(1), 20–25.

Arora, A., Telang, R., & Xu, H. (2008). Optimal policy for software vulnerability disclosure.
Management Science, 54(4), 642–656.

Autio, E., Hameri, A.-P., & Vuola, O. (2004). A framework of industrial knowledge spillovers in
big-science centers. Research Policy, 33(1), 107–126.

Barcomb, A., Kaufmann, A., Riehle, D., Stol, K.-J., & Fitzgerald, B. (2020). Uncovering the
periphery: A qualitative survey of episodic volunteering in free/libre and open source
software communities. IEEE Transactions on Software Engineering, 46(9), 962–980.

Berlin Declaration. (2020). Berlin declaration on digital society and value-based digital
government.
https://www.bmi.bund.de/SharedDocs/pressemitteilungen/EN/2020/12/berlin-
declaration-digitalization.html

Bogart, C., Kästner, C., & Herbsleb, J. (2015). When it breaks, it breaks: How ecosystem
developers reason about the stability of dependencies. 2015 30th IEEE/ACM
International Conference on Automated Software Engineering Workshop (ASEW), 86–89.

Boh, W. F. (2007). Mechanisms for sharing knowledge in project-based organizations.
Information and Organization, 17(1), 27–58.

Boh, W. F., Slaughter, S. A., & Espinosa, J. A. (2007). Learning from Experience in Software
Development: A Multilevel Analysis. Management Science, 53(8), 1315–1331.

Cavusoglu, H., Cavusoglu, H., & Raghunathan, S. (2007). Efficiency of vulnerability disclosure
mechanisms to disseminate vulnerability knowledge. IEEE Transactions on Software
Engineering, 33(3), 171–185.

Chen, W., Jin, F., & Xue, L. (2022). Flourish or perish? The impact of technological acquisitions
on contributions to open-source software. Information Systems Research, 33(3), 867–886.

Chinthanet, B., Kula, R. G., McIntosh, S., Ishio, T., Ihara, A., & Matsumoto, K. (2021). Lags in
the release, adoption, and propagation of npm vulnerability fixes. Empirical Software
Engineering, 26(3), 47.

Cox, R. (2019). Surviving software dependencies. Communications of the ACM, 62(9), 36–43.
Crowston, K., Wei, K., Li, Q., & Howison, J. (2006). Core and periphery in free/libre and open

source software team communications. Proceedings of the 39th Annual Hawaii
International Conference on System Sciences (HICSS’06), 6, 118a–118a.

Dahlin, K. B., Chuang, Y.-T., & Roulet, T. J. (2018). Opportunity, motivation, and ability to
learn from failures and errors: Review, synthesis, and ways to move forward. Academy of
Management Annals, 12(1), 252–277.

44

Daniel, S., Maruping, L., Cataldo, M., & Herbsleb, J. (2018). The impact of ideology misfit on
open source software communities and companies. MIS Quarterly, 42(4), 1069–1096.

Decan, A., Mens, T., & Grosjean, P. (2019). An empirical comparison of dependency network
evolution in seven software packaging ecosystems. Empirical Software Engineering,
24(1), 381–416.

Drupsteen, L., & Guldenmund, F. W. (2014). What is learning? A review of the safety literature
to define learning from incidents, accidents and disasters. Journal of Contingencies and
Crisis Management, 22(2), 81–96.

Eghbal, N. (2020). Working in Public: The Making and Maintenance of Open Source Software.
Stripe Press.

Ellison, R. J., & Woody, C. (2010). Supply-chain risk management: Incorporating security into
software development. 43rd Hawaii International Conference on System Sciences, 1–10.

Executive Office of the President. (2021). Executive Order 14028 on Improving the Nation’s
Cybersecurity. https://www.federalregister.gov/documents/2021/05/17/2021-
10460/improving-the-nations-cybersecurity

Faraj, S., Jarvenpaa, S. L., & Majchrzak, A. (2011). Knowledge collaboration in online
communities. Organization Science, 22(5), 1224–1239.

Ferraiuolo, A., Behjati, R., Santoro, T., & Laurie, B. (2022). Policy transparency: Authorization
logic meets general transparency to prove software supply chain integrity. Proceedings of
the 2022 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem
Defenses, 3–13.

Frese, M., & Keith, N. (2015). Action errors, error management, and learning in organizations.
Annual Review of Psychology, 66(1), 661–687.

Gal-Or, E., & Ghose, A. (2005). The economic incentives for sharing security information.
Information Systems Research, 16(2), 186–208.

Geiger, R. S., Howard, D., & Irani, L. (2021). The labor of maintaining and scaling free and
open-source software projects. Proceedings of the ACM on Human-Computer
Interaction, 5(CSCW1), 175:1-175:28.

Germonprez, M., Gandhi, R., & Link, G. (2021). The routinization of open source project
engagement: The case of open source risk management routines. Communications of the
Association for Information Systems, 49(1).

Germonprez, M., Kendall, J. E., Kendall, K. E., Mathiassen, L., Young, B., & Warner, B. (2017).
A theory of responsive design: A field study of corporate engagement with open source
communities. Information Systems Research, 28(1), 64–83.

Goggins, S., Lumbard, K., & Germonprez, M. (2021). Open source community health:
Analytical metrics and their corresponding narratives. 2021 IEEE/ACM 4th International
Workshop on Software Health in Projects, Ecosystems and Communities (SoHeal), 25–
33.

Haefliger, S., von Krogh, G., & Spaeth, S. (2008). Code reuse in open source software.
Management Science, 54(1), 180–193.

Hansen, M. T. (1999). The search-transfer problem: The role of weak ties in sharing knowledge
across organization subunits. Administrative Science Quarterly, 44(1), 82–111.

Homsma, G. J., Van Dyck, C., De Gilder, D., Koopman, P. L., & Elfring, T. (2009). Learning
from error: The influence of error incident characteristics. Journal of Business Research,
62(1), 115–122.

Howison, J., & Crowston, K. (2014). Collaboration through open superposition: A theory of the
open source way. MIS Quarterly, 38(1), 29–50.

45

Hwang, E. H., Singh, P. V., & Argote, L. (2015). Knowledge sharing in online communities:
Learning to cross geographic and hierarchical boundaries. Organization Science, 26(6),
1593–1611.

Iacus, S. M., King, G., & Porro, G. (2011). Multivariate matching methods that are monotonic
imbalance bounding. Journal of the American Statistical Association, 106(493), 345–361.

Iacus, S. M., King, G., & Porro, G. (2012). Causal inference without balance checking:
Coarsened exact matching. Political Analysis, 20(1), 1–24.

Izadi, M., Heydarnoori, A., & Gousios, G. (2021). Topic recommendation for software
repositories using multi-label classification algorithms. Empirical Software Engineering,
26(5), 93.

Jacobides, M. G., Cennamo, C., & Gawer, A. (2018). Towards a theory of ecosystems. Strategic
Management Journal, 39(8), 2255–2276.

Katz, J. (2020). Libraries.io Open Source Repository and Dependency Metadata. Zenodo.
https://zenodo.org/record/3626071

Kula, R. G., German, D. M., Ouni, A., Ishio, T., & Inoue, K. (2018). Do developers update their
library dependencies? Empirical Software Engineering, 23(1), 384–417.

Lifshitz-Assaf, H., & Nagle, F. (2021). The digital economy runs on open source. Here’s how to
protect it. Harvard Business Review, 1–7.

Lin, Y.-K., & Maruping, L. M. (2022). Open source collaboration in digital entrepreneurship.
Organization Science, 33(1), 212–230.

Lindberg, A., Berente, N., Gaskin, J., & Lyytinen, K. (2016). Coordinating interdependencies in
online communities: A study of an open source software project. Information Systems
Research, 27(4), 751–772.

MacCormack, A., Rusnak, J., & Baldwin, C. Y. (2006). Exploring the structure of complex
software designs: An empirical study of open source and proprietary code. Management
Science, 52(7), 1015–1030.

Madsen, P. M., & Desai, V. (2010). Failing to learn? The effects of failure and success on
organizational learning in the global orbital launch vehicle industry. Academy of
Management Journal, 53(3), 451–476.

Majchrzak, A., & Jarvenpaa, S. L. (2010). Safe contexts for interorganizational collaborations
among homeland security professionals. Journal of Management Information Systems,
27(2), 55–86.

Malhotra, A., Majchrzak, A., & Lyytinen, K. (2021). Socio-technical affordances for large-scale
collaborations: Introduction to a virtual special issue. Organization Science, 32(5), 1371–
1390.

McLaughlin, M.-D., & Gogan, J. (2018). Challenges and best practices in information security
management. MIS Quarterly Executive, 17(3). https://aisel.aisnet.org/misqe/vol17/iss3/6

Mehrizi, M. H. R., Nicolini, D., & Modol, J. (2022). How do organizations learn from
information system incidents? A synthesis of the past, present, and future. MIS Quarterly,
46(1), 531–590.

Mitra, S., & Ransbotham, S. (2015). Information disclosure and the diffusion of information
security attacks. Information Systems Research, 26(3), 565–584.

Nagle, F. (2018). Learning by contributing: Gaining competitive advantage through contribution
to crowdsourced public goods. Organization Science, 29(4), 569–587.

Nagle, F. (2019). Open source software and firm productivity. Management Science, 65(3),
1191–1215.

Nagle, F., Dana, J., Hoffman, J., Randazzo, S., & Zhou, Y. (2022). Census II of Free and Open

46

Source Software—Application Libraries. The Linux Foundation and The Laboratory for
Innovation Science at Harvard. https://linuxfoundation.org/wp-
content/uploads/LFResearch_Harvard_Census_II.pdf

Nambisan, S., Lyytinen, K., Majchrzak, A., & Song, M. (2017). Digital innovation management:
Reinventing innovation management research in a digital world. MIS Quarterly, 41(1),
223–238.

Nonaka, I., & von Krogh, G. (2009). Tacit knowledge and knowledge conversion: Controversy
and advancement in organizational knowledge creation theory. Organization Science,
20(3), 635–652.

O’Mahony, S., & Ferraro, F. (2007). The emergence of governance in an open source
community. Academy of Management Journal, 50(5), 1079–1106.

Owen-Smith, J., & Powell, W. W. (2004). Knowledge networks as channels and conduits: The
effects of spillovers in the boston biotechnology community. Organization Science,
15(1), 5–21.

Pashchenko, I., Vu, D.-L., & Massacci, F. (2020). A qualitative study of dependency
management and its security implications. Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 1513–1531.

Payne, C. (2002). On the security of open source software. Information Systems Journal, 12(1),
61–78.

Prana, G. A. A., Sharma, A., Shar, L. K., Foo, D., Santosa, A. E., Sharma, A., & Lo, D. (2021).
Out of sight, out of mind? How vulnerable dependencies affect open-source projects.
Empirical Software Engineering, 26(4), 1–34.

Ransbotham, S. (2010). An empirical analysis of exploitation attempts based on vulnerabilities in
open source software. Proceedings of the 9th Workshop on the Economics of Information
Security. Workshop on the Economics of Information Security (WEIS), Cambridge, MA.

Ransbotham, S., Mitra, S., & Ramsey, J. (2012). Are markets for vulnerabilities effective? MIS
Quarterly, 36(1), 43–64.

Roberts, J. A., Il-Horn Hann, & Slaughter, S. A. (2006). Understanding the motivations,
participation, and performance of open source software developers: A longitudinal study
of the apache projects. Management Science, 52(7), 984–999. aqh.

Safadi, H., Johnson, S. L., & Faraj, S. (2021). Who contributes knowledge? Core-periphery
tension in online innovation communities. Organization Science, 32(3), 752–775.

Schryen, G. (2011). Is open source security a myth? Communications of the ACM, 54(5), 130–
140.

Sen, R., Choobineh, J., & Kumar, S. (2020). Determinants of software vulnerability disclosure
timing. Production and Operations Management, 29(11), 2532–2552.

Sharma, A., Thung, F., Kochhar, P. S., Sulistya, A., & Lo, D. (2017). Cataloging GitHub
repositories. Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering, 314–319.

Skopik, F., Settanni, G., & Fiedler, R. (2016). A problem shared is a problem halved: A survey
on the dimensions of collective cyber defense through security information sharing.
Computers & Security, 60, 154–176.

Spaeth, S., von Krogh, G., & He, F. (2015). Perceived firm attributes and intrinsic motivation in
sponsored open source software projects. Information Systems Research, 26(1), 224–237.

Stanko, M. A. (2016). Toward a theory of remixing in online innovation communities.
Information Systems Research, 27(4), 773–791.

Synopsys. (2022). Open Source Security and Risk Analysis Report.

47

https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-
security-risk-analysis.html

Temizkan, O., Kumar, R. L., Park, S., & Subramaniam, C. (2012). Patch release behaviors of
software vendors in response to vulnerabilities: An empirical analysis. Journal of
Management Information Systems, 28(4), 305–338.

The Linux Foundation. (2022). Addressing Cybersecurity Challenges in Open Source Software.
https://linuxfoundation.org/tools/addressing-cybersecurity-challenges-in-open-source-
software/

Tullio, D. D., & Staples, D. S. (2013). The governance and control of open source software
projects. Journal of Management Information Systems, 30(3), 49–80.

von Krogh, G., Haefliger, S., Spaeth, S., & Wallin, M. W. (2012). Carrots and rainbows:
Motivation and social practice in open source software development. MIS Quarterly,
36(2), 649–676.

Weber, R. (2003). Theoretically speaking. MIS Quarterly, 27(3), iii–xii.
Yoo, Y., Henfridsson, O., & Lyytinen, K. (2010). The new organizing logic of digital

innovation: An agenda for information systems research. Information Systems Research,
21(4), 724–735.

Zander, U., & Kogut, B. (1995). Knowledge and the speed of the transfer and imitation of
organizational capabilities: An empirical test. Organization Science, 6(1), 76–92.

Zollo, M., & Reuer, J. J. (2010). Experience spillovers across corporate development activities.
Organization Science, 21(6), 1195–1212.

Zollo, M., & Winter, S. G. (2002). Deliberate learning and the evolution of dynamic capabilities.
Organization Science, 13(3), 339–351.

48

APPENDIX A

Predicting Topics for GitHub Repositories

According to GitHub, topics are labels that create subject-based connections between GitHub

repositories. As such, topics can be useful for identifying the application domains of OSS

projects. For example, the maintainers of Apache Log4j specify the project to have the following

topic labels: java, api, library, log4j, jvm, logger, logging, syslog, apache, and log4j2. Although

topics can help improve the discoverability and reveal important qualities of GitHub projects,

many GitHub projects do not have any topic labels assigned to them because doing so requires

additional effort and attention from the project owners. Therefore, several researchers have

proposed machine learning methods for predicting topics for GitHub repositories. To make topic

label predictions, scholars have utilized bytecode and interdependencies (Vargas-Baldrich et al.,

2015), domain knowledge from StackOverflow (Cai et al., 2016), and textual descriptions (Izadi

et al., 2021).

Given the characteristics of our data, the topic prediction approach proposed by Izadi et

al. (2021) is most applicable. The approach consists of three steps: data preparation and

preprocessing; model training; and model evaluation and use. We followed their approach to

predict the topics of OSS projects in our sample in situations where the projects do not have any

owner-specified topic labels. Technical details of this approach can be found in Izadi et al.

(2021). In what follows, we provide a high-level overview of implementing this approach in our

setting.

Step 1: data preparation and preprocessing. As in any supervised machine learning

exercise, the first step is to develop a testbed of instances with appropriate labels. We identified

and downloaded GitHub projects that have an English-based README file and have been

assigned topic labels by their project owners. We preprocessed the textual descriptions in

49

README files using common text mining procedures, which include tokenizing the text;

converting tokens to lowercase; removing punctuations, digits, and URLs; omitting stop words;

and removing tokens with a frequency of fewer than 50 in the collection. The remaining tokens

in a README description served as features for the respective OSS project. The topic labels are

the targets of our predictions. The topics were matched against GitHub’s featured topics or their

aliases. Although over 5000 unique topics were initially identified, we followed Izadi et al.

(2021) and focused on predicting the GitHub-featured topics because these topics are validated

and curated by the entire GitHub community. We further restricted the topic labels to the top 200

most frequent topics because they cumulatively represented over 90% of topics being assigned to

GitHub repositories. At the end, our testbed comprised a collection of 130,869 GitHub projects

with English textual descriptions and at least one GitHub-featured topic. We split these GitHub

projects into a training set (80%) and a testing set (20%).

Step 2: model training. Using data from the training set, we trained multiple text

classifiers to learn the relationship between tokens in README descriptions and their

corresponding topics. Because an OSS project can have multiple topics, the text classifiers were

set up to perform multilabel classification. Izadi et al. (2021) considered four candidate text

classifiers. The first classifier is Naive Bayes (denoted by NB). This classifier can be

implemented in two ways: one based on the term frequency-inverse document frequency (TF-

IDF) features, and another using a Doc2Vec representation in which word-embedding vectors

were used to capture the semantic meanings of textual descriptions. The second classifier is

logistic regression (denoted by LR), which learned a function to predict the log odds of each

topic given the TF-IDF features or the Doc2Vec representations of the textual descriptions. The

third classifier is FastText, which learned the Word2Vec representations of words in the textual

descriptions of GitHub projects and used a hierarchical softmax loss function to train a tree-

50

based classifier. The last classifier is based on DistilBERT, which is the condensed version of the

state-of-the-art BERT model via an introduction of knowledge distillation during the pretraining

phase. DistilBERT retains 97% of BERT’s language understanding capability with 60% faster

training time. A multilabel classification layer is added on top of DistilBERT for fine-tuning the

model for topic prediction. Additionally, instances with less frequent topics are assigned higher

weights in DistilBERT’s loss function to address the imbalanced topic distribution in the training

data. The parameters of the classifiers followed the configurations in Izadi et al. (2021). For

example, the learning rate of DistilBERT was set to 3e-5, the maximum input length to 512, and

the batch size to four. The number of features for TF-IDF was set to 20,000, and the dimension

of Doc2Vec was set to 1,000 with a minimum frequency of 10.

Step 3: model evaluation and use. We followed Izadi et al. (2021) and evaluated the

performance of the candidate text classifiers using five evaluation metrics: recall, precision, F1

measure, success rate, and label ranking average precision (LRAP). Recall quantifies the

percentage of actual topics that are correctly predicted. Recall-at-5 (denoted by R@5), hence, is

the average percentage of actual topics that are correctly predicted in the model’s top five

predicted topic labels. Precision is measured by the percentage of predicted topics that are

correct. Precision-at-5 (denoted by P@5) reports the average percentage of correct topic

predictions in the model’s top five predicted topic labels. F1 measure-at-5 (denoted by F@5) is

the harmonic mean of recall-at-5 and precision-at-5. The success rate at 𝑘𝑘 (denoted by S)

measures the percentage of each model’s top 𝑘𝑘 predicted topics that are correct. S@1 measures

whether the most probable topic predicted by the model is correct. S@5 measures whether at

least one of the five most probable topics predicted by the model is correct. LRAP examines the

ranking of the probable topics predicted by each model and computes the overall percentage of

higher-ranked topics that are correct. LRAP is calculated by the average label ranking precision

51

of each project, which is calculated by ∑ �ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑗𝑗 𝑒𝑒𝑟𝑟𝑟𝑟𝑘𝑘𝑗𝑗⁄ �𝑗𝑗∈𝐽𝐽 |𝐽𝐽|⁄ , where 𝐽𝐽 is the set of correct

topics, 𝑒𝑒𝑟𝑟𝑟𝑟𝑘𝑘𝑗𝑗 is the rank of topic 𝑗𝑗, and ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑗𝑗 is the number of correct topics ranked higher

than topic 𝑗𝑗. Table A1 summarizes the performance of the candidate models when evaluated

against data from the testing set. We found that DistilBERT outperformed other models across

all evaluation metrics, which is consistent with the findings reported by Izadi et al. (2021).

Hence, we chose to leverage the DistilBERT model to predict the topic labels of OSS projects in

our sample when they were not specified by their project owners.

Table A1. Performance Evaluation Results

Model S@1 S@5 R@5 P@5 F1@5 LRAP
NB, D2V 0.218 0.629 0.459 0.167 0.232 0.171
NB, TF-IDF 0.320 0.421 0.292 0.100 0.140 0.220
LR, D2V 0.195 0.620 0.445 0.159 0.222 0.154
LR, TF-IDF 0.373 0.854 0.705 0.256 0.356 0.320
FastText 0.634 0.873 0.725 0.263 0.363 0.630
DistilBERT 0.651 0.900 0.770 0.284 0.392 0.665

52

APPENDIX B

Detailed Results of Qualitative Review and Coding

Table B1. Analyzing Discoverers of OSS Consumers’ Vulnerabilities

OSS consumer CVE number Discoverer Discoverer type
1 23andme/yamale CVE-2021-38305 mildebrandt Core member
2 abel533/Mapper CVE-2022-36594 sybb0743 Security researcher
3 alerta/alerta CVE-2020-26214 satterly Core member
4 authelia/authelia CVE-2021-29456 james-d-elliott Core member
5 bolt/core CVE-2021-27367 bobdenotter Core member
6 clientIO/joint CVE-2021-23444 kumilingus Core member
7 codecov/codecov-node CVE-2020-7597 drazisil Core member
8 doctrine/dbal CVE-2021-43608 morozov Security researcher
9 dpgaspar/flask-appbuilder CVE-2021-29621 dpgaspar Core member
10 dropwizard/dropwizard CVE-2020-11002 joschi Core member
11 eclipse-theia/theia CVE-2021-28161 luigigubello Core member
12 ethercreative/logs CVE-2021-32752 Tam Core member
13 facebook/hermes CVE-2021-24037 dulinriley Core member
14 forkcms/forkcms CVE-2020-23960 carakas Core member
15 formstone/formstone CVE-2020-26768 adrianomarcmont Security researcher
16 http4s/blaze CVE-2021-21293 rossabaker Peripheral contributor
17 kaminari/kaminari CVE-2020-11082 viseztrance Core member
18 locka99/opcua CVE-2022-25903 locka99 Core member
19 mermaid-js/mermaid CVE-2021-43861 knsv Peripheral contributor
20 mithunsatheesh/node-rules CVE-2020-7609 mithunsatheesh Core member
21 mjmlio/mjml CVE-2020-12827 kmcb777 Core member
22 ome/omero-web CVE-2021-41132 Lachlan Horsey Security researcher
23 prismjs/prism CVE-2021-3801 ready-research Peripheral contributor
24 publify/publify CVE-2021-25974 mvz Peripheral contributor
25 rare-technologies/bounter CVE-2021-41497 Daybreak2019 Security researcher
26 reg-viz/reg-suit CVE-2021-32673 progfay Core member
27 tauri-apps/tauri CVE-2022-39215 martin-ocasek Security researcher
28 tryghost/ghost CVE-2021-39192 zn9988 Peripheral contributor
29 vyperlang/vyper CVE-2021-41122 charles-cooper Core member
30 yahoo/elide CVE-2020-5289 wcekan Core member

53

Table B2. Core-Member Discoverers in Consumer Projects and Their Contributions to
Supplier Projects

Consumer project Vulnerability discoverer
(core member in the
consumer project)

Supplier project Discoverer’s
contributions to
supplier project

23andme/yamale mildebrandt yaml/pyyaml None
alerta/alerta satterly pyca/cryptography None

pallets/flask None
yaml/pyyaml None

authelia/authelia james-d-elliott mde/ejs None
twbs/bootstrap None
auth0/node-jsonwebtoken None
jquery/jquery None
request/request None
unshiftio/url-parse None

bolt/core bobdenotter sebastianbergmann/phpunit None
twigphp/twig None
erusev/parsedown None

clientio/joint kumilingus jashkenas/backbone None
jquery/jquery None
lodash/lodash None
webpack/webpack-dev-server None

codecov/codecov-node drazisil request/request None
doctrine/dbal morozov sebastianbergmann/phpunit 10 commits
dpgaspar/flask-appbuilder dpgaspar pallets/flask None
dropwizard/dropwizard joschi eclipse/jetty.project 3 commits

fasterxml/jackson-databind None
scala/scala None

ethercreative/logs Tam craftcms/cms None
facebook/hermes dulinriley request/request None

npm/node-tar None
forkcms/forkcms carakas symfony/symfony None

sebastianbergmann/phpunit None
http4s/blaze rossabaker asynchttpclient/async-http-client None

scala/scala None
locka99/opcua locka99 dtolnay/serde-yaml None
mermaid-js/mermaid knsv lodash/lodash None

moment/moment None
webpack/webpack-dev-server None
dominictarr/event-stream None

mithunsatheesh/node-rules mithunsatheesh lodash/lodash None
mjmlio/mjml kmcb777 lodash/lodash None

jquery/jquery None
publify/publify mvz flori/json None
vyperlang/vyper charles-cooper ethereum/py-evm None
yahoo/elide wcekan fasterxml/jackson-databind None

eclipse/jetty.project None

	Introduction
	Conceptual Background
	Open-Source Development and Software Supply Chains
	Software Vulnerabilities
	Organizational Learning from Security Incidents

	Theory Development
	Knowledge Spillovers from Vulnerability Disclosures
	Moderation by Criticality

	Empirical Strategy
	Data
	Research Design and Sample Construction
	Methodology

	Results
	Main Results
	Alternative Specifications and Robustness Checks
	Analysis of Mechanisms and Alternative Explanations
	Role of Software Dependencies
	Similarity of Application Domains in Supplier and Consumer OSS
	Knowledge Spillovers vs. Diffusion of Software Vulnerabilities
	Vulnerability Discoverers
	Learning by Contributing

	Sum of Evidence

	Discussion and Conclusion
	Theoretical Contributions
	Practical Implication
	Limitations and Future Research

	References
	Appendix A
	Predicting Topics for GitHub Repositories

	Appendix B
	Detailed Results of Qualitative Review and Coding

