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Abstract: This study aims to understand efficient network formation and optimal de-

fensive resource distribution in the presence of an intelligent attacker. We present a

two-player dynamic framework in which the Defender and the Attacker compete in a

network formation and defence game with heterogeneous vertices’ values. Such a model

allows for studying the trade-off between network efficiency and security. Contrary to the

literature, we find that a centrally protected star network does not yield the maximum

payoff for the defending side in most circumstances, even being the most secure network

formation. Additionally, it reveals a new type of network that often arises in an equilib-

rium of the games with limited defensive resources—a maxi-core network.
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1 Introduction

The scholarship of economics of networks generally focuses on a fundamental aspect:

either network efficiency (Jackson, 2010) or network security (Dziubiński & Goyal, 2013;

Goyal & Vigier, 2010). In most real-life scenarios, however, the issues of efficiency and

security cannot be considered alone or at the expense of the other.

The fastest military supply chain is worthless during a war if it is not adequately

protected with anti-aircraft defences, and can be easily disturbed by cheap unmanned
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combat aerial vehicles (UCAVs). Harsh social distancing measures can mitigate the

spread of a virus but also reduce the density of social connections and severely damage

business processes. Creating overconnected information communication technology (ICT)

networks can significantly increase the data flow but also facilitate the hacker’s navigation

inside the enterprise’s file system.

To illustrate the concepts of efficiency and security in a networked environment, we

refer the reader to Figure 1. A star network (Figure 1a) is generally considered the most

secure network: a significant share of its value is concentrated in the central node, making

it easy to protect. However, any two peripheral nodes must overcome two links in order

to communicate with each other, which makes it inefficient in some scenarios.
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Figure 1: Examples of secure and efficient networks on nine nodes. Each node is valued

according to the number of connections it has.

On the contrary, the complete network in Figure 1b is highly efficient. Each pair of

nodes in this network are immediate neighbours, which allows for direct communication.

However, complete networks are also the most insecure as it is hard to protect all high-

value nodes when the defensive resources are scarce. The trade-off between security and

efficiency is the central topic of this research.

More specifically, this study aims to understand how to construct an efficient network

in the presence of an intelligent attacker. To tackle this problem, we develop a game

in which two asymmetric players, the Defender and the Attacker, compete in network

design and defence over two stages.

In the initial wiring stage, the Defender is endowed with some fixed number of nodes
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and is free to arrange them in any connected network structure by creating costly links.

For instance, the Defender can represent an IT department that chooses an optimal infor-

mation technology structure and hierarchical protocols, optimizes data and information

exchange efficiency against the expected rate of security incidents.

At the beginning of the following encounter stage, the Attacker observes the network

structure. For example, he can perform port scanning to retrieve the organisation of In-

ternet Protocol (IP) address or use a specialised search engine to discover the underlying

server structure of the organisation (e.g. Shodan Search Engine1). The Attacker and the

Defender then engage in a simultaneous move game in which the Attacker attempts to

compromise one of the vertices while the Defender tries to protect the network by dis-

tributing some scarce defensive resources among the vertices. If the Defender does not

protect the vertex that the opponent attacked, the Attacker performs a successful attack

and compromises the vertex, receiving its value, while the Defender receives the residual

value of the network. On the contrary, the attack fails if the Defender protects a correct

node, in which case the Defender keeps the full value of the network only to herself. For

instance, if a hacker is trying to compromise the enterprise’s network using a particular

exploit, the cybersecurity specialist’s success depends on whether she/he correctly pre-

dicted the attack vector and patched the vulnerable machines. The framework is stated

formally and in greater detail at the beginning of Section 2.

The game utilises a Subgame Perfect Nash Equilibrium as a solution concept and is

solved via the backward induction beginning at the encounter stage. The main technical

challenge in the solution occurs in the wiring stage of the game. The stage can be stated

as the Defender’s maximisation problem in which she chooses a network which yields her

the maximum expected payoff accounting for the overall network value and expected loss

from an attack in the encounter stage. Formally it can be written as a constrained integer

maximisation problem defined over a non-convex set. Problems of this type, in general, do

not allow for direct analytical treatment. Thus, to characterise an equilibrium solution,

we rely on the convex relaxation technique, which implicates the relaxation of integrality

constraints and linearisation of non-convex constraints. This approach yields a simpler

maximisation problem defined on a convex hull of the original set while maintaining

the original form of the objective function. We then analytically identify the equilibrium

1Shodan is a search engine that allows users to search various ICT devices connected to the Internet.
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solution to the relaxed maximisation problem and verify numerically whether this solution

is indeed the equilibrium solution to the original game. The solution to the relaxed

maximisation problem and numerical verification can be found in Section 3. Convex

relaxation procedure is described in great detail in Appendix C.

The model produces three main results. First, contrary to the literature, it demon-

strates that the centrally protected star does not lead to the highest payoff for the de-

fending side in most circumstances. Instead, it is an extreme formation, which yields

the highest possible protection and the lowest possible efficiency among all connected

graphs. Second, it reveals the new type of network that is often optimal in games with

scarce defensive resources—a maxi-core network with a completely connected core and

sparse periphery. A maxi-core network is an intermediate option that optimally balances

between a star network’s security and the efficiency of a complete network. This network

allows the Defender to enjoy the efficiency of a completely connected core while extracting

the maximum possible value from a periphery without an increase in expected loss from

an attack. Third, it shows that the density of the optimal network decreases in the cost

of a single link. Additionally, we have developed a weighted model modification, which

allows us to account for the possibility that the damage received by the Defender extends

beyond the value of the compromised vertex (e.g. reputational losses) or constitute only

a share of the value of a compromised vertex (e.g. partial or temporary loss of a node).

The paper is built as follows. This section provides an introduction and reviews

related literature. Section 2 formalises the model and offers the analysis of the final

encounter stage of the game. Section 3 analyses the overall equilibrium of the game. In

Section 4 we present the weighted versions of the model. The discussion of limitations

and future research is presented in Section 5. For those interested in computing the

equilibria, related proofs, and supplementary materials, see Appendices A-E.

1.1 Related literature

This study contributes to the literature on network design and defence, which emerged

on two pillars of theoretical economics: contest theory and network theory.

Contest theory is concerned with strategic resource allocation in conflict situations; see

Konrad (2009) for a comprehensive survey. A considerable share of literature addresses

optimal resource allocation over multiple battlefields. Roberson (2006), Hart (2008),
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Washburn (2013), and Kovenock and Roberson (2008, 2012, 2021) researched the family

of Colonel Blotto and General Lotto games, in which players simultaneously distribute

limited resources over several battlefields. Each player then obtains the payoff equal to the

sum of the valuations of the battlefields she won. Battlefields’ valuations in Colonel Blotto

games are assumed to be exogenous. On the contrary, our model allows a defender to

choose network structure and, consequently, manipulate the values of battlefields (named

vertices in our setting). An additional strategic element allows us to study the optimal

interconnected structures of the battlefields and how the choice of a network structure

interacts with contest incentives.

Network theory focuses on strategic network formation, optimal structures, and per-

formance of social and economic networks in diverse circumstances; Jackson (2010), and

Goyal (2007) provided perhaps the most comprehensive surveys on the matter. While the

network theory takes its origins in the early 17 century, studies on network design and

defence in the presence of an intelligent adversary appeared only recently (Naumowicz,

2014).

Arguably, the most famous series of papers on the topic was started by Goyal and

Vigier (2010, 2014). In their original framework, a designer and an adversary compete

over several stages in a network formation and defence game. In the first stage, the de-

signer chooses a network formation and distributes defensive resources. The adversary

then observes the network and the distribution of defensive resources, allocates conta-

gious attack resources on nodes, and chooses how successful resources should navigate

the network. The network in their framework represented the interconnected system of

computers, while the attack was modelled after a virus, which navigated through it. Sim-

ilarly to our research, the authors then studied the trade-off between the connectivity

and the increased vulnerability that the connectivity implies. Still, our study has two

crucial differences.

Firstly, in the original papers, the authors assumed that all nodes were homogeneous

and used a simple cardinality2 function to evaluate the network. While useful for studying

optimal defensive networks, the approach neglected the influence of network formation on

overall graph efficiency, suggesting that a centrally-protected star is an optimal structure

in most scenarios. On the contrary, the vertices in our framework are heterogeneous

2Cardinality refers to the number of vertices in the network.
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and valued according to their degree centrality—the number of immediate neighbours.

The alternative setting confirms that a centrally-protected star is indeed the most secure

structure but also demonstrates that it is the least efficient connected network. It can only

be optimal for a defending side whenever the cost of a single connection is sufficiently high.

Secondly, the original model assumed perfect information, meaning that the attacker

knew both the network structure and the defensive resource allocation. On the contrary,

we employ a simultaneous game approach in the encounter stage that represents the

players’ uncertainty about the actions of their corresponding opponents, which is more

in line with real-world cybersecurity incidents (Anderson, 2001).

Cerdeiro et al. (2015), Goyal et al. (2016), Dziubiński and Goyal (2017) utilised a very

similar setting to the original Goyal and Vigier papers. The authors explored the defence

of the edges and decentralised approaches to network protection, employing the same

cardinality-based value function as described above. Cerdeiro et al. (2015) and Goyal

et al. (2016) assumed every node to be a player, allowing them to unilaterally create

connections and choose their own “immunisation” plan. The strategic capabilities of the

adversary in the paper by Goyal et al. (2016), however, were limited, enabling him only

to choose the type of nodes over which he mixes uniformly at random. Dziubiński and

Goyal (2017) studied conflict intensity, denoted as the minimum sum of costs spent by

the defender and the attacker. Even though the network was treated as given, the author

discovered a new efficient star-like formation—the windmill graph. The decentralised

defence is out of the scope of this study, but we expand on the ideas of those papers

by introducing more sophisticated network value functions and uncertainty about the

opponents’ actions.

Gueye et al. (2011) proposed an alternative approach to the problem. In their simul-

taneous network topology game, a defender chooses a spanning tree of some connected

undirected graph while an attacker chooses an edge to attack to disrupt the communi-

cation between vertices. The authors assumed that any spanning tree has the same cost

(normalised at one) and that the attacker must guess which edges are present in the cho-

sen tree. If the attacker does not guess the correct edge, the game stops, and the network

wins. The authors concluded that the attacker mixes uniformly at random over the set of

potential critical edges (defined as edges that yield the largest payoffs for the attacker).

Similarly to Goyal and Vigier (2014), networks in this setting are differentiated only by
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defensive capabilities, neglecting the efficiency that the defending side might extract from

the structure itself. Moreover, any connected network structure with the same cardinality

has the same price for the network designer. Our framework utilises a more sophisticated

network value function and assumes that connections are costly. This enables us to study

the influence of an edge cost on the optimal choice of the network.

Acemoglu et al. (2016) studied the model of security investments in a network of

interconnected agents. The network structure was treated as given, and the main fo-

cus was shifted towards the possibility of cascading failures following the exogenous or

endogenous attacks, thus not covering our main findings.

The sequential game presented by Hoyer and Jaegher (2016) studied the optimal

network structure against two modes of external attack: a link-deletion attack and a

vertex-deletion attack. Contrary to the general literature, they found that star formation

is the worst choice against a vertex-deletion attack. Their result is caused by the network

designer’s inability to protect (or immunise) vertices. The authors, however, discovered

that the cost of a link is one of the leading influencers on optimal network formation,

which echoes our results.

Studies of optimal network design and defence are not limited to economics litera-

ture. For instance, recent papers by Makridis (2021) and Wang et al. (2021) utilised

a reinforcement learning approach to solve a very similar design and defence problem.

However, due to the limitations of the methodology, the action sets of both the defender

and the attacker were limited in both studies. In the former paper, a defender had an

initial network and was only allowed to add links, while the attacker could attack only

the nodes of the largest value. In the latter paper, the authors used a game-theoretic

specification to set up a reward function and recognised the existence of mixed-strategy

equilibrium, but did not provide any insights about the optimal network formation.

To conclude, our study contributes to the literature along three dimensions: (1) we

introduce a more sophisticated network value function, which recognises the influence

of connectivity on overall graph value and allows us to study the tension between se-

curity and efficiency; (2) we study the simultaneous version of the game that models

the uncertainty of both defending and attacking sides, which is more in line with real-

world cybersecurity events; (3) the costly links assumption allows us to study the optimal

network formation under different cost regimes.
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2 The model of network design and defence

2.1 Model setup

Two players, the Defender (She) and the Attacker (He), compete in the network

defence game over two stages: the initial wiring stage and the following encounter

stage.

In the wiring stage the Defender is endowed with a fixed quantity n > 1 of vertices

(or nodes), which she arranges in some connected graph3 G by creating costly edges (or

links) between them. For instance, the vertices can represent the employees of some

organisation, while edges are organisational links between them. Similarly, we could

think of vertices as computers belonging to the organisational network and edges as

literal connections between ICT devices. In our baseline model, we assume that every

vertex in the newly arranged graph is valued according to its degree of centrality.

Definition 2.1 (Degree Centrality). Degree centrality is defined as the number of links

incident upon a vertex (i.e. the number of ties that a vertex has).

The usage of degree centrality represents the idea that more connected vertices are

more valuable for organisational integrity and allows us to study the trade-off between

the security and efficiency extracted from a network structure. The partially ordered set

of vertices’ values is represented by vector v⃗ = (v1, . . . , vn). The network’s overall value

is assumed to be the sum of the value of all vertices minus the cost of all edges. As each

additional edge increases the sum of values of all vertices by two, each network must have

exactly 1
2

∑n
i=1 vi edges. Multiplying the number of edges by the cost of a single link, c,

yields the overall cost of the edges.

Assumption 2.1. The overall value of the networks G is the difference between the sum

of values of all vertices and the cost of all edges:

V (v⃗) =

(
1− c

2

) n∑
i=1

vi, (2.1)

where c is the cost of a single edge.

At the beginning of the encounter stage, the Attacker observes the network structure

G created by the Defender in the wiring stage. The Attacker can obtain information on

3A connected graph is a graph in which there is a path from any vertex to any other vertex.
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the enterprise’s organisational structure via social media (e.g. LinkedIn) or perform port

scanning to determine the organisation of IP addresses, hosts, ports and their networked

structure. The Attacker and the Defender then engage in a simultaneous zero-sum game:

the Attacker attempts to compromise one of the vertices of his choosing, while the De-

fender attempts to prevent that by protecting δ ≥ 1 vertices. For example, the Attacker

chooses an entry point to exploit in the network, and the Defender chooses an appropri-

ate immunisation plan (e.g. device patching policies). Alternatively, the Attacker might

choose an individual employee for a spear-phishing attack, while the Defender decides

which employees to prioritise for cybersecurity awareness training.

The attack is successful if the Attacker targets an unprotected vertex, receiving a

payoff equal to this vertex’s value, while the Defender obtains the overall value of the

network minus the value of the compromised node4. If the Attacker targets a protected

node, the attack fails, and the game finishes. In this case, the Attacker obtains nothing,

and the Defender loses nothing and obtains the value of the network in full. The payoff of

the Attacker is derived in the following subsection, while the Defender’s expected payoff

at the beginning of the game is formally stated at the beginning of Section 3.

The game utilises Subgame Perfect Nash Equilibrium (SPNE) as a solution concept

and assumes that each player rationalises against its opponent’s optimal choices. The

game is solved via backward induction, beginning at the encounter stage.

2.2 Analysis: encounter stage

In the encounter stage the Defender already possesses a set of nodes arranged in a

connected network G and δ ≥ 1 defensive resources, which she uses to protect δ nodes.

If some node i is defended, then any attack on this node is unsuccessful. Vertices’ values

are written as a finite set v⃗ = (v1, . . . , vn) such that v1 ≥ v2 ≥ · · · ≥ vn without loss of

generality.

The Attacker insidiously attempts to compromise one of the vertices from the net-

work G. The strategic form of the zero-sum game when δ = 1 is illustrated by Table

1.

Observe from Table 1 that the subgame played in the encounter stage does not have

4In Section 4 we consider the case where the damage is allowed to be larger or smaller than the value

of the compromised node.
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Defender

Attacker

1 2 3 · · · n

1 0 v1 v1 · · · v1

2 v2 0 v2 · · · v2
...

...
...

...
...

...

n vn vn vn · · · 0

Table 1: Strategic form game on the network with n vertices and δ = 1, where the number

in each cell gives the Attacker’s payoff (or the loss of the Defender).

an equilibrium with pure strategies. For instance, suppose vertex i is attacked with

probability 1. The best response of the Defender is to defend i with probability 1, leaving

the Attacker with a payoff of zero. The Attacker then has a profitable deviation to attack

a different node. A similar situation occurs when the Defender has multiple defensive

resources, δ > 1. In this case, if the Attacker attacks vertex i with probability 1, the

Defender’s best response is to allocate one of the defensive resources to node i with

probability 1. Again, this leaves the Attacker with zero payoff and a profitable deviation

to attack a different unprotected node. It follows that the equilibrium strategies of the

Defender and the Attacker must be mixed.

Claim 2.1. The encounter stage subgame does not have an equilibrium with pure strate-

gies.

Additionally, we assume the scarcity of defensive resources. Observe that if δ ≥ n,

the Defender’s best response is to protect every vertex, even if it is not attacked with a

positive probability. In this case, the Attacker is indifferent to any strategy, as he knows

that the attack will fail regardless of his actions. From now on, we focus on the more

interesting case with δ < n.

Assumption 2.2. The Defender has δ < n defensive resources.

It is now essential to establish the set of vertices attacked with positive probability,

referred to later in the article as the Attacker’s support.

Definition 2.2 (Attacker’s Support). The Attacker’s support (suppA) is the set of nodes

attacked with positive probability.
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Similarly, we refer to the set of nodes defended with positive probability as the De-

fender’s support, suppD.

First, observe that in the mixed equilibrium | suppA | = k > δ. If it is not the case

(and k ≤ δ), the Defender can protect all k vertices included in the Attacker’s support

leaving the latter with zero payoff.

Claim 2.2. The Attacker always attacks k > δ vertices with positive probability:

|suppA| > δ.

Second, observe that if some vertex is not attacked with positive probability, the

Defender never protects it. There is no incentive to protect the vertex, which will certainly

not be attacked. Thus, the Attacker’s support is always larger or equal to the Defender’s.

Claim 2.3. The Defender protects a vertex with positive probability only if it is attacked

with positive probability:

suppD ⊆ suppA.

Now we demonstrate that in any equilibrium, the Attacker mixes over k > 1 highest

value vertices of the network G. If some vertex with index m > 1 in v⃗ is attacked

with positive probability, then every vertex of a higher value is attacked with positive

probability as well. The finding is summarised below.

Claim 2.4. In any equilibrium if node m is attacked with positive probability, so is any

node l such that vl > vm.

Proof of Claim 2.4. See Appendix A. ■

An immediate corollary of Claim 2.4 is that in any organisational structure, the most

valuable vertices should always be defended with positive probability in equilibrium.

Ensuring the protection of the most valuable employees (e.g. board members, research

personnel) and the most connected ICT devices (e.g. servers and routers) can minimise

the expected loss from an attack.

Consider now some equilibrium candidate with the top k highest value vertices at-

tacked with positive probability. Suppose that node j is defended with probability qj

and not defended with probability xj = 1− qj. Then, the Attacker is indifferent between

attacking vertex i and vertex j if:

vixi = vjxj.
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Observe that
∑k

j=1 xj =
∑k

j=1

(
1− qj

)
and

∑k
j=1 qj = δ. It follows that

∑k
j=1 xj =

k − δ. Using xi =
vk
vi
xk we get:(

vk
v1

+
vk
v2

+ · · ·+ vk
vk

)
xk = k − δ. (2.2)

Rearranging equation (2.2) yields the probability of node k to remain undefended:

xk =
(k − δ)

∏k
j=1 vj

vk
∑k

j=1

∏k
i ̸=j vi

. (2.3)

Since xk is a probability, we must have xk ≤ 1, which yields the following necessary

condition for k to be in the equilibrium Attacker’s support:

(k − δ)
∏k

j=1 vj

vk
∑k

j=1

∏k
i ̸=j vi

≤ 1. (2.4)

It is now necessary to check for the monotonicity in k of condition (2.4), such that the

condition for k vertices implies the condition for top k−1 vertices. This would guarantee

that any pure strategy in the Attacker’s support yields him an equal expected payoff and,

consequently, that there are no nodes z < k excluded from the Attacker’s support and

that there is no profitable deviation to smaller support for the Attacker.

Claim 2.5. The condition (2.4) for the top k vertices implies the condition for the top

k − 1 vertices.

Proof of Claim 2.5. See Appendix A. ■

Moreover, condition (2.4) is also sufficient for there to exist an equilibrium with k

nodes included in the support, as it also guarantees that any pure strategy in the At-

tacker’s support yields him an equal or higher payoff than the value of any node excluded

from the Attacker’s support.

The encounter stage of the game follows the “no soft-spots” principle for Colonel

Blotto games with multiple targets described by Dresher (1961). The Defender mixes

over high-value nodes such that each becomes equally attractive (in expectation) to the

Attacker, implying that there are no “soft-spots” among all the protected nodes. Fur-

thermore, the nodes that are never protected with positive probability are of lesser value

to the Attacker than the expected gain from an attack on any of the protected nodes.

Thus, the Attacker mixes only over nodes protected with positive probability or nodes

with a value equal to the expected gain from the attack on any of the protected nodes.
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Now we denote the ordered set of values of nodes that are included in the Attacker’s

support as v⃗k. Finally, we can write down the expected loss function for the Defender

D(v⃗k), or the expected gain function for the Attacker A(v⃗k) on a given graph G knowing

the Attacker mixes over top k highest value nodes:

D(v⃗k) = −A(v⃗k) = −
(k − δ)

∏k
j=1 vj∑k

j=1

∏
i ̸=j vi

= −xkvk. (2.5)

Observe that if condition (2.4) holds strictly for some node k and does not hold for

node k + 1, the game has a unique equilibrium in which the Attacker and the Defender

have identical support suppD = suppA. The equilibrium is unique, as if the Attacker

chooses smaller support mixing over k − z nodes, where z ∈ Z and z ∈ [1, k − δ), then

by Lemma 2.2, the Defender’s optimal strategy is to protect only k − z nodes with

positive probability. In this case, if both players mix over the k − z nodes such that the

indifference principle is satisfied for both of them, the Attacker receives a strictly lower

expected payoff than from mixing over the top k nodes.

Claim 2.6. If condition (2.4) holds strictly for some node k, while it does not hold for

node k + 1, then the encounter stage has a unique equilibrium in which the Attacker and

the Defender mix over the top k nodes | suppD | = | suppA | = k and suppD = suppA.

Proof of Claim 2.6. See Appendix A. ■

However, the equilibrium support might not be unique. If condition (2.4) holds strictly

for some node y and with equality for nodes indexed ν ∈ (y, y + z], where z ∈ Z and

z ∈ [1, n − y], then the Attacker has multiple equilibrium supports, all of which are

payoff-equivalent. This echoes a known result about the payoff-equivalence in zero-sum

games by von Neumann (1928). We summarise this observation in Claim 2.7.

Claim 2.7. If condition (2.4) holds strictly for some node y and with equality for nodes

indexed ν ∈ (y, y + z] then the Attacker has multiple equilibrium supports | suppA | ∈

[y, y + z], all of which are payoff-equivalent.

Proof of Claim 2.7. See Appendix A. ■

Therefore, the size of the Attacker’s equilibrium support can be written down as

follows:
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|suppA| ∈ [k, g],

where

k = max

{
z :

(z − δ)
∏z

j=1 vj

vz
∑z

j=1

∏
i ̸=j vi

< 1

}
,

and

g = max

{
z :

(z − δ)
∏z

j=1 vj

vz
∑z

j=1

∏
i ̸=j vi

≤ 1

}
.

Now observe that the expected gain from an attack on top k nodes (2.5) is strictly

decreasing in δ. It immediately follows that under Assumption 2.2, the Defender utilises

all the available defensive resources in any equilibrium.

Claim 2.8. The Defender utilises all the available defensive resources in any equilibrium.

Observe that the Defender cannot influence k in the encounter stage. However, as the

size of the Attacker’s support is a function of vertices’ values, it follows that the Defender

can manipulate it in the wiring stage when choosing the network formation.

We now show that the Attacker’s expected gain in the encounter stage is minimised

when the game is played on a star network5. At the same time, it attains its maximum

when the game is played on a complete network6.

Observe first that the Defender’s expected payoff is convex over v⃗k, or, alternatively,

that the Attacker’s expected payoff is concave over v⃗k, where index k corresponds to the

number of nodes included in the Attacker’s support.

Lemma 2.1. For any strategy of the Attacker satisfying Claims 2.5–2.7 and condition

(2.4), the expected loss of the Defender/payoff of the Attacker in the encounter stage is

convex/concave over v⃗k = {(v1, . . . , vk) ∈ Rk
+ | 1 ≤ vi ≤ n− 1}.

Proof of Lemma 2.1. See Appendix A. ■

We now establish the results about which networks yield the highest and the lowest

expected gain for the Attacker. We demonstrate that the Attacker obtains the highest

expected gain if the game is played on a complete network, while he obtains the lowest

possible gain if the game is played on a star network.

5A star network has a degree distribution in which one node is completely connected, and the rest of

the nodes have one connection each, G∗ = (n− 1, 1 · · · , 1).
6A complete network has a degree distribution in which each node is completely connected, GC =

(n− 1, · · · , n− 1).
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Proposition 2.1. The Attacker’s expected gain attains its minimum when the game is

played on a star network, while it attains its maximum when the game is played on a

complete network.

Proof of Proposition 2.1. See Appendix A. ■

The results of Proposition 2.1 should be intuitive. For a fixed number of nodes n,

star and path7 networks have the smallest possible number of links, limiting the expected

gain of the Attacker. However, unlike in a path network, half of the value of a star is

concentrated in a single core node. Thus, the Defender is always better off choosing a

star network than a path network since protecting the core node with high probability

limits her expected loss while keeping the same overall network value8. On the contrary,

a complete network has the largest possible quantity of links, meaning that every single

node attains the highest possible value. Given that defensive resources are scarce, it

provides the Attacker with an opportunity to compromise a completely connected node

with high probability, yielding the maximum possible gain. Since the encounter stage is

a zero-sum game, it also implies that Defender’s expected loss is maximised when the

encounter stage is played on a complete network and minimised when it is played on a

star network.

These findings echo the results obtained by Goyal and Vigier (2014), who also recog-

nised that a centrally protected star leads to the highest possible payoff for the defending

side in a strategic contest versus the intelligent Attacker. The star network is, however,

not necessarily an optimal choice for the Defender if we also account for the overall net-

work value—the research proceeds with the analysis of the initial wiring stage of the

game.

3 Equilibrium

In the wiring stage the Defender chooses a network formation. She optimises the

graph structure by considering the graph’s overall value and the equilibrium expected

payoff in the encounter stage.

7The path graph (or network) has two nodes of degree 1, and all other nodes of degree 2.
8In fact, the expected loss of the Defender in the encounter stage played on a star network never

exceeds 1 in the equilibrium.
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Consider first the expected value of the Defender at the beginning of the game if she

chooses some network G.

U(v⃗) = V (v⃗) +D(v⃗k), (3.1)

where:

V (v⃗) is the overall value of the network, V (v⃗) =
(
1− c

2

)∑n
i=1 vi by Assumption 2.1;

D(v⃗k) is the expected loss of the Defender from an attack on k highest value nodes in the

encounter stage.

We restrict the cost of an edge to be c ≤ 2. If c > 2, the Defender’s payoff is always

negative, and she always chooses the network with the least possible number of edges

and best defensive capabilities—a star network. The following assumption rules out this

possibility.

Assumption 3.1. The cost of a single link is restricted to c ≤ 2.

The Defender’s goal in the wiring stage is to maximise the expected value of the game

(3.1). In order to do so, she must choose some degree sequence9 which maximises her

payoff. We call this sequence a maximising degree sequence. Note that two networks with

identical degree sequences yield the same payoff for the Defender.

Definition 3.1 (Maximising Degree Sequence). A maximising degree sequence is a degree

sequence which maximises the Defender’s expected value function.

It immediately follows from Lemma 2.1 that the Defender’s expected utility at the

beginning of the game (3.1) is convex over the set of node values’ v⃗ for a given size of the

Attacker’s support k as the sum of a linear and convex functions.

Claim 3.1. The Defender’s expected value function at the beginning of the game, U(v⃗),

is convex over v⃗ = {(v1, v2, ...vn) ∈ Rn
+ | 1 ≤ vi ≤ n− 1} for a given size of the Attacker’s

support k.

Observe that the objective function of the Defender (3.1) is discontinuous as the

expected loss from an attack has a different form depending on how many nodes are

9A degree sequence of a graph is some monotonic nonincreasing sequence of positive integer numbers,

which represents all of its vertex degrees.
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included in the Attacker’s support. To proceed, we exploit the fact that any network

with a given degree distribution can be attributed to one or several classes with all

networks in a given class sharing the same size of the Attacker’s support, | suppA |. Given

that the minimum Attacker’s support must be k > δ, there exist n−δ classes of networks,

each of which has the same form of the expected loss from an attack. If the encounter

stage on some network has multiple equilibrium supports, then this network belongs to

several classes with respect to the Attacker’s support. However, by Claim 2.7, regardless

of which equilibrium support the Attacker chooses (and to which class the corresponding

network is attributed), both players always obtain equivalent payoffs.

Thus, we divide the Defender’s problem in the wiring stage into two sub-problems:

1. The full support case (k = n) in which all nodes pass the Attacker’s support

condition (2.4), meaning that all nodes will be attacked with positive probability

in equilibrium.

2. The partial support case (k ≤ n) in which k nodes pass the Attacker’s support

condition (2.4) and the other n− k nodes do not. In this case, top k nodes will be

attacked with positive probability in equilibrium, and other n − k nodes will not.

The partial support case yields n− δ− 1 similar maximisation problems, which we

consider simultaneously.

We can now state the Defender’s maximisation problem in a standard form for a

given class of networks k. Finding the solutions to each of n− δ maximisation problems

and then finding among them the one that yields the maximum expected payoff for the

Defender yields the equilibrium solution for the game.
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max
vi

(
1− c

2

) n∑
i=1

vi −
(k − δ)∑k

i=1
1
vi

(3.2)

s.t. vi ∈ Z ∀i ∈ [1, n], (3.3)

1 ≤ vi ≤ n− 1 ∀i ∈ [1, n], (3.4)

y∑
i=1

vi ≤ y(y − 1) +
n∑

i=y+1

min(vi, y) ∀y ∈ [1, n], (3.5)

k − δ − 1∑
j∈K\{i}

1
vj

− vi ≤ 0 ∀i ∈ [1, k], (3.6)

− (k − δ)∑k
i=1

1
vi

+ vj ≤ 0 ∀j ∈ (k, n], (3.7)

where:

K is the set of all vertices in the Attacker’s support endogenously defined in the

encounter stage;

(3.2) is the objective function of the Defender;

(3.3) is the integer constraint on the values of the nodes;

(3.4) is the set of degree constraints10;

(3.5) is the set of Erdos-Gallai’s sufficient and necessary conditions for the graphicality

of a sequence (Tripathi & Vijay, 2003);

(3.6) is the lower boundary for the degrees of vertices inside the Attacker’s support de-

rived from condition (2.4);

(3.7) is the upper boundary for the degrees of vertices outside the Attacker’s support

derived from condition (2.4).

We denote the set of all degree sequences that satisfy constraints (3.3)–(3.7) as Γ.

Erdos-Gallai conditions (3.5) ensure that the degree of some vertex i in degree se-

quence G does not exceed the maximum possible value given the degrees of all other

vertices. If the conditions are satisfied and the sum of all degrees in a sequence is even,

the sequence is guaranteed to be graphic. A sequence is said to be graphic if it is possible

10Note that any vertex in a connected network must have at least one edge and at most n− 1 edges.
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to construct a graph having the sequence as its degree sequence. For more information

about Erdos-Gallai conditions, refer to Appendix B.

Constraints (3.6) and (3.7) are imposed by the Attacker’s support condition (2.4) for

a given class of networks with k top nodes attacked with positive probability. From (2.4)

we have that the vertices included in the Attacker’s support must be:

(k − δ)∑k
j=1

1
vi

≤ vi,

or rearranged and simplified:
k − δ − 1∑
j∈K\{i}

1
vj

≤ vi. (3.8)

Then the vertices outside the Attacker’s support must be:

vj ≤
(k − δ)∑k

i=1
1
vi

. (3.9)

It follows from Lemma 2.1 that conditions (3.7) are convex in standard form and,

therefore, must span a convex set. However, by the same lemma, conditions (3.6) are

defined by a sum of the concave and linear functions, which might result in non-convexity

of Γ even assuming the continuity of nodes’ values. Therefore, the maximisation problem

(3.2) is an integer maximisation problem defined over a non-convex set. Problems of this

kind can be attributed to the family of Mixed-Integer Non-linear Problems (MINLP),

which, in general, are known to be non-deterministic polynomial-time (NP) hard problems

(Sahinidis, 2019). Therefore, to approach the maximisation problem (3.2), integrability

and non-convex constraints must be relaxed.

Roadmap for the analysis We perform the equilibrium analysis in three steps. First,

in Subsection 3.1, we establish general analytical results about the equilibrium of the

game. Second, in Subsection 3.2, we analyse the base case of the game with δ = 1

utilising the convex relaxation technique to obtain candidate solutions for the original

maximisation problem (3.2). Third, in Subsection 3.3, we check the feasibility of relaxed

problem solutions for the original maximisation problem. Finally, in Subsection 3.4, we

perform a numerical analysis of the Defender’s problem to verify that the solutions to

the relaxed problem are indeed the solutions to the original problem.
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3.1 Limiting properties of equilibrium

First, observe that the condition for some network G to be optimal is a function of

the cost of a single link c. This is because the Defender’s expected utility function at the

beginning of the game (3.1) is linear in c. Assuming that we can write down the set of

all possible connected networks on n nodes, we then can compare them for a given value

c and choose the particular network which yields the maximum utility for the Defender

for this c. Performing this exercise for some arbitrary large network is not tractable due

to the sheer quantity of possible connected networks. However, we demonstrate that two

network structures always occur in equilibrium for extreme values of c regardless of the

number of vertices and defensive resources in the Defender’s possession: complete and

star networks. A complete network emerges as a maximising degree sequence if the cost

of a single edge is sufficiently small, c < cl, while a star is an optimal choice if the cost

of a single edge is sufficiently high, c > cu. We denote cu and cl as higher and lower cost

boundaries. This result is summarised in Proposition 3.1.

Definition 3.2. A cost boundary is a threshold which demarcates two different maximis-

ing degree sequences.

Proposition 3.1. A complete network is optimal for the Defender if the cost of a single

edge is sufficiently small, c < cl. A star network is optimal whenever the cost of an edge

is sufficiently high, c > cu.

Proof of Proposition 3.1. See Appendix A. ■

Figure 2 illustrates the principles behind Proposition 3.1. We take n = 5 and δ = 2

and draw 21 lines that correspond to the Defender’s utility functions (w.r.t. c) calculated

for all of the possible connected networks. For the relatively small quantity of vertices

and defensive resources, it is fairly easy to determine all of the potential maximising

degree sequences and then verify which ones can serve as maximisers. Observe that in

the illustrated case, there are four maximising degree sequences and three corresponding

cost boundaries. The quantity of the intermediate boundaries might be significantly

increased with an increase in n and δ, but the lower-cost boundary (cl) and the upper

boundary (cu) will always exist.

In Figure 3 we demonstrate the graphs which correspond to maximising degree se-

quences for n = 5 and δ = 2.
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cucicl

Star Formation
4-2-2-1-1
4-4-2-2-2
Complete Network
Other Formations

Figure 2: The Defender’s expected value from a game on five vertices (n = 5) with

two defensive resources (δ = 2) as a function of a single link cost, c, built for every

feasible connected network structure. Highlighted lines are spawned by the networks,

which appear as equilibrium solution for some given c. Boundaries on the figure are:

cl = 1.7 is the lower cost boundary, cu = 1.78 is the upper boundary, and ci = 1.71 is an

intermediate boundary.

Thus, Proposition 3.1 implies that whenever the cost of connection is sufficiently

low, the Defender prioritises network connectivity over the potential security concerns—

choosing a complete network. This is because low connection costs allow the Defender to

extract large benefits from every additional link, which vastly outweigh potential losses

from an attack. On the contrary, if the connection cost is sufficiently high, the Defender’s

benefits from additional links are limited and can be easily washed out by an external

attack. In this case, the Defender prioritises network security over its connectivity. By

choosing a star network and protecting a central node with high probability, the Defender

can significantly reduce the potential losses from an attack while still extracting some

value from limited connectivity.

Additionally, observe from Figures 2 and 3 that the higher cost of a single edge is

associated with the optimal network structures of a lower density11, while the lower cost

of an edge is associated with higher density structures. In Proposition 3.2, we demonstrate

that this observation is true in the general case.

11Network density is the portion of the potential edges in a graph that are actual edges. Potential edge

is the edge that might exist between two nodes—regardless of whether it actually exists or not. Any

network on n vertices has n(n−1)
2 potential edges. A network with n vertices and e edges has a density

of 2e
n(n−1) .
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Figure 3: All optimal networks for a game with five vertices and two defensive resources.

The colors of networks correspond to the colors of lines demonstrated in Figure 2.

Proposition 3.2. The density of equilibrium degree sequence is a monotonically decreas-

ing function of the cost of a single edge, c.

Proof of Proposition 3.2. See Appendix A. ■

Propositions 3.1 and 3.2 suggest that the Defender evaluates the added benefits of

connectivity against an increase in potential damage from an attack that the connectivity

brings. Moreover, the density of an optimal network is a decreasing function of the cost of

a connection, with the star and complete networks being extremes of this function. Thus,

an organisation can optimise its network structure by balancing additional connectivity

benefits against security concerns. Those results echo the findings of Slikker and van den

Nouweland (2000), who have demonstrated that, in the general case, the higher cost of a

connection in communication networks is associated with structures of lower density.

We now demonstrate that when the Defender possesses some arbitrary finite number

of defensive resources, δ ≥ 1 and a large number of vertices n → ∞, the Attacker can

only compromise some infinitesimal share of the network. Therefore, if the Defender

possesses a large number of nodes, n → ∞, network effects outweigh the potential loss

from an expected attack, and it is always optimal for her to choose a complete network.

We summarise this claim below.

Proposition 3.3. If the Defender possesses n → ∞ vertices and some finite number

of defensive resources δ ≥ 1, the game has a unique equilibrium solution in which the

Defender chooses a complete network.

Proof of Proposition 3.3. See Appendix A. ■
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Thus, if some organisation has a very large number of nodes (e.g. a large international

corporation) and has limited defensive resources, an attack is successful with a probability

which tends to 1. However, the benefits extracted from the connectivity of a large network

are disproportionally larger than any potential damage the organisation might encounter.

In this case, a connected network yields the largest possible payoff for the organisation.

However, note that this result might not hold if the upper boundary of a loss from an

attack exceeds the value of the largest node. In Section 4, we offer a modified version of

the model, which can account for this possibility.

To conclude, we obtained three general properties of the equilibrium: (1) if the De-

fender has some finite number of nodes, a star network is always optimal for a sufficiently

high cost of a single edge, while a complete network is always optimal for a sufficiently

small cost of a single edge; (2) the density of maximising degree sequence monotonically

decreases with respect to a cost of a single edge and (3) a complete network always yields

the maximum payoff for the Defender if n→ ∞.

To analyse the equilibrium further we now consider the base case of the game in which

δ = 1.

3.2 Relaxed problem solution, δ = 1

Since the original maximisation problem of the Defender in the wiring stage (3.2) is

defined over a non-convex set, it cannot be solved utilising standard convex optimisation

methods. Thus, to proceed, we utilise a convex relaxation method widely used to find

approximate solutions to MINLP problems (Pulleyblank, 1989; Tuy & Van Thuong,

1988).

Convex relaxation is a modelling technique in which some of the constraints of the

original problem are relaxed, extending the objective function to the larger convex space.

We perform convex relaxation in two steps: (1) we lift the integrality constraints (3.3)

and Erdos-Gallai constraints (3.5) which are inherently integer, and (2) we linearise non-

convex constraints (3.6).

1. Integer relaxation Lifting integrality constraints (3.3) and Erdos-Gallai graphi-

cality constraints results in the following relaxed maximisation problem:

23



max
vi

(
1− c

2

) n∑
i=1

vi −
(k − δ)∑k

i=1
1
vi

(3.10)

s.t. 1 ≤ vi ≤ n− 1 ∀i ∈ [1, n], (3.11)

k − 2∑
j∈K\{i}

1
vj

− vi ≤ 0 ∀i ∈ [1, k], (3.12)

− (k − 1)∑k
i=1

1
vi

+ vj ≤ 0 ∀j ∈ (k, n]. (3.13)

We denote the set over which the maximisation problem (3.10) is defined as Υ, Γ ⊆ Υ.

2. Convex hull relaxation Observe that set Υ might still be non-convex due to the

presence of non-convex Attacker’s support conditions (3.12). In order to “convexify” the

problem and preserve maximum information about the original set, we construct a convex

hull of the set over which optimisation problem (3.10) is defined. Convex hull of Υ is

defined as the smallest convex compact set (Υ) such that Υ ⊆ (Υ). We then maximise

the objective function (3.10) over the convex hull of set Υ.

Since non-convex regions Υ are defined by smooth concave functions, the convex hull

can be constructed by linearising constraints (3.12) (Boyd & Vandenberghe, 2004). Thus,

in order to convexify Υ, we perform the following procedure: (1) we find all extreme points

of non-convex regions of set Υ, (2) we find corresponding hyperplane equations spanned by

the extreme points of non-convex regions of Υ, and (3) we replace non-convex constraints

with linear constraints defined by hyperplane equations. The procedure is described in

great detail in Appendix C. Figure 4 illustrates an example where n = 4 and the Attacker

has full support.
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(a) Υ4, v4 = 1 (b) Υ4, v4 = 3

(c) (Υ4), v4 = 1 (d) (Υ4), v4 = 3

Figure 4: The set of feasible values, Υ4, for nodes 1, 2, and 3 along the edge v4, (a) and

(b); and the convex hull of set of feasible values, (Υ4), for nodes 1, 2, and 3 along the

edge v4, (c) and (d). More details about this example can be found in Appendix C.2.

The convexification of the set of feasible values yields an optimisation problem which

requires a maximisation of a convex function over a convex compact set. Therefore,

convex relaxation allows us to utilise the Bauer maximum principle (Bauer, 1958).

Theorem 3.1 (Bauer maximum principle). Any function that is convex and continuous,

and defined on a compact convex set, attains its maximum at some extreme point of that

set.

Since the objective function of the original maximisation problem is convex by Claim

3.1 and continuous under integer relaxation for a given class of networks, and (Υ) is

convex and compact by definition, it must then be maximised at some extreme point of

a convex hull. If any extreme point of (Υ) is feasible for the original problem (3.2), then

this point is a maximising degree sequence for the original problem (Geoffrion, 1971).
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However, relaxation techniques might lead to sub-optimal maximising degree se-

quences, as by relaxing integer and non-convex constraints, we might lose some of the

solutions that appear on non-convex regions of the original set. Thus, to back up our

analysis, we numerically verify that the solution to the relaxed problem is indeed the

optimal (equilibrium) solution for networks of up to 20 nodes in Subsection 3.4. The

discussion on the limitations of relaxation techniques can be found in Subsection 5.

Also, observe that the original sets for full and partial support cases have different

sets of constraints: in the partial support case, constraints (3.13) are active, while in

the full support case, they are not. This implies that sets of extreme points for partial

and full support cases might differ. Thus, we consider relaxed problems for both cases

separately. To distinguish the cases, we denote the sets of feasible values for the full and

partial support cases as ΥC and ΥP , respectively.

Characterising extreme points for the full support case and every partial support case

and then finding the extreme points which yield the maximum payoff for the Defender

for a given c yields a set of all maximisers for the relaxed maximisation problem.

Full support We state the relaxed maximisation problem for the full support case as:

max
vi

(
1− c

2

) n∑
i=1

vi −
(k − δ)∑k

i=1
1
vi

(3.14)

s.t. vi ∈ (ΥC). (3.15)

The set of constraints which define (ΥC) can be found in Appendix C.2.

In Appendix C.1 we show that the set (ΥP ) has extreme points that fall into one of

four families:

1. Star network family: n− 1, 1, · · · , 1︸ ︷︷ ︸
×(n−1)

 ; (3.16)

2. Complete network family: n− 1, · · · , n− 1︸ ︷︷ ︸
×n

 ; (3.17)
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3. Intermediate family:n− 1, · · · , n− 1︸ ︷︷ ︸
×q

,
(n− 1)(q − 1)

q
, · · · , (n− 1)(q − 1)

q︸ ︷︷ ︸
×(n−q)

 , (3.18)

where q ∈ [2, n− 1];

4. Lower family: n− 1,
n− 1

n− 2
, 1, · · · , 1︸ ︷︷ ︸

×(n−2)

 . (3.19)

Partial support We first demonstrate that any node excluded from the Attacker’s

support must attain the maximum possible value that satisfies constraints (3.13). To

demonstrate that, we restate the objective function of the original maximisation problem

to reflect that, in the partial support case, the network has two types of nodes: (i) nodes

that are always attacked with a positive probability denoted vk and (ii) nodes which are

not attacked with positive probability vs:

max
vki ,v

s
j

UP =
k∑
i=1

vki +
n∑

j=k+1

vsj −
c

2

 k∑
i=1

vki +
n∑

j=k+1

vsj

− (k − 1)∑k
i=1

1
vki

, (3.20)

Since in the partial support case, nodes indexed j > k are not included in the At-

tacker’s support, the Defender is always better off choosing the maximum possible value

for them. Since the upper boundary for nodes outside the Attacker’s support is defined

by convex constraint (3.13), it follows that it is always optimal for the Defender to choose

the value for nodes indexed j > k such that (3.13) binds. In this case, the Attacker is

indifferent between adding nodes of value vs to his support or not, as by Claim 2.7 in

both cases, his expected payoffs are equivalent. Therefore, by choosing the maximum

possible value for the nodes outside the Attacker’s support, the Defender increases the

overall value of the network without increasing her expected loss from an attack.

Lemma 3.1. Consider the subset of networks with partial Attacker’s support, k < n.

In equilibrium, any node outside the Attacker’s support must attain a value equal to the

expected gain of the Attacker from an attack on top k nodes.
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Proof of Lemma 3.1. See Appendix A. ■

We now state the relaxed maximisation problem for the partial support case as:

max
vi

(
1− c

2

) n∑
i=1

vi −
(k − δ)∑k

i=1
1
vi

(3.21)

s.t. vi ∈ (ΥP ). (3.22)

The set of constraints which define (ΥP ) can be found in Appendix C.4.

In Appendix C.3 we demonstrate that in addition to extreme point families (3.16)–

(3.19), set (ΥC) yields three more:

1. k-family:  k

k − 1
, · · · , k

k − 1︸ ︷︷ ︸
×k

, 1, · · · , 1︸ ︷︷ ︸
×(n−k)

 ; (3.23)

where k ∈ [2, n− 1].

2. Quasi-star family:n− 1,
k

k − 1
, · · · , k

k − 1︸ ︷︷ ︸
×(k−1)

,
k − 1

(k−1)2

k
+ 1

n−1

, · · · , k − 1
(k−1)2

k
+ 1

n−1︸ ︷︷ ︸
×(n−k)

 ; (3.24)

where k ∈ [2, n− 1].

3. Lower partial family:n− 1,
k(n− 1)

kn− 2k − n+ 1
,

k

k − 1
, · · · , k

k − 1︸ ︷︷ ︸
n−2

 , (3.25)

where k ∈ [3, n− 1].

Global maximum We can now find all global maximisers for the relaxed maximisation

problem. Via the Bauer maximum principle, the Defender must attain the maximum

payoff by choosing one of the sequences that belong to families (3.16)–(3.19) or (3.23)–

(3.25). We also know from Lemma 3.1 that the maximising degree sequence is conditional
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on the cost of a single edge, c. Thus, by comparing the Defender’s expected payoffs from

games on sequences defined by extreme points of sets ΥC and ΥP for a given c, we can

obtain all of the maximisers for the relaxed maximisation problem.

In Lemma 3.2, we demonstrate that the relaxed maximisation problem for the base

case with δ = 1 has three global maximisers: (1) a complete network if the cost of an

edge is sufficiently low, c < cl, (2) a sequence of an intermediate family with q = 2 if the

cost of an edge attains intermediate values, cl < c < cu, and (3) a star network if the cost

of an edge is sufficiently high, cu < c < 2.

Lemma 3.2. The relaxed maximisation problem has the following solutions: the optimal

network for the Defender is a complete network if c < cl, a sequence of the intermediate

family with q = 2 if cl < c < cu, and a star network if cu < c < 2, where cl = 2− 2
n
and

cu = 2− 2n− 4

n2 − 2n+ 2
.

The Defender is indifferent between a complete network and a sequence of the intermediate

family with q = 2 if c = cl, and between a sequence of the intermediate family with q = 2

and a star network if c = cu.

Proof of Lemma 3.2. See Appendix A ■

However, the solutions for the relaxed maximisation problem might not be feasible

for the original problem since integrality (3.3) and Erdos-Gallai (3.5) constraints were

relaxed. In the following subsection, we check whether the integrality and Erdos-Gallai

constraints are satisfied by candidate solutions described in Lemma 3.2.

3.3 Feasibility of solutions

By Lemma 3.2 the relaxed maximisation problem yields three potential maximisers for

the original problem: (1) a star network, (2) a complete network, or (3) an intermediate

family sequence with two nodes of value vq = n−1. While a star network and a complete

network are always graphic, it is not always the case for the sequence of the intermediate

family (3.18) with q = 2. For instance, consider the sequence of the intermediate family

(3.18) with n = 7 and q = 2. This sequence has two nodes of value 6 and five nodes of

value 3. Since the overall sum of degrees in this sequence is odd (2× 6+ 5× 3 = 27), the

sequence is not graphic.
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In this subsection, we demonstrate that when the intermediate sequence with q = 2

is not feasible, the Defender then chooses between star, complete, or a sequence of the

intermediate family with the minimum possible q such that this sequence is graphic. In

Subsection 3.4 we numerically verify that this result holds for networks of up to 20 nodes.

First, we rule out the possibility that when the sequence of the intermediate extreme

point family with q = 2 is not feasible, the Defender chooses a sequence that belongs to

one of the families (3.19) or (3.23)–(3.25). This is because the majority of extreme points

that belong to families (3.19) and (3.23)–(3.25) yield sequences that are not graphic (or

even integer). The only exception is a degree sequence that belongs to k-family (3.23)

with n = 4, but it is always dominated by a star network. Therefore, it cannot be an

equilibrium solution to the original maximisation problem.

Claim 3.2. Sequences that belong to a lower family (3.19), quasi-star family (3.24), and

lower partial family (3.25) are never graphic; the k-family of extreme points (3.23) yields

one sequence that is graphic when n = 4 and k = 2, but a star network always dominates

this sequence.

Proof of Claim 3.2. See Appendix A. ■

However, if a sequence of the intermediate family with q = 2 is not graphic, it might

still be possible for the Defender to choose another sequence that belongs to the inter-

mediate family with q ≥ 2 and graphic. Moreover, any of those sequences dominate star

and complete networks for intermediate values of c.

Lemma 3.3. The Defender prefers a feasible intermediate sequence to star and complete

networks if cl < c < cqu, where cl = 2− 2
n
and

cqu = 2− (n− 1)(6q − 4)− 2n2(q − 1)

(n2 − 2n+ 2) (n(q − 1)− q)
.

Proof of Lemma 3.3. See Appendix A. ■

Moreover, the Defender is always better off choosing an intermediate sequence with

the lowest possible amount of nodes of value vq = n−1. To see this, consider the following

maximisation problem in which the Defender chooses the number of nodes of value vq,

optimising the expected value at the beginning of the game. Substituting vk = n − 1

and vs = (q−1)(n−1)
q

into the objective function (3.20) yields the following univariate

maximisation problem:
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max
q

UI = −(n− 1)(n(c− 2)(q − 1) + cq − 2)

2q

s.t. 2 ≤ q ≤ n.

(3.26)

Choosing the minimum possible quantity of fully connected nodes when the game is

played on a intermediate family sequence always yields the highest payoff for the Defender.

Lemma 3.4. The Defender’s expected payoff from a game on a intermediate family se-

quence (3.18) increases in quantity of completely connected nodes q if c < 2 − 2
n
, and

decreases in q if c > 2− 2
n
. The Defender is indifferent if c = 2− 2

c
.

Proof of Lemma 3.4. See Appendix A. ■

It follows from Lemmas 3.3 and 3.4 that whenever a sequence of the intermediate

family is optimal for the Defender, she must choose the minimum possible number of

fully connected nodes q.

We now analyse the conditions under which intermediate family sequences are graphic

and feasible. We say that if some intermediate sequence is graphic, it yields a maxi-core

network.

Definition 3.3 (Maxi-core Networks). A q-maxi-core network is a network which has q

vertices of value vq = n − 1, which constitute the core and n − q peripheral vertices of

value vb = (n−1)(q−1)
q

∈ Z. We refer to a q-maxi-core network with minimum possible

number of completely connected vertices m = min
{
q : (n−1)(q−1)

q
∈ Z

}
as an m-maxi-core

network.

The example of an m-maxi-core network on nine nodes is demonstrated in Figure 5.

The illustrated network has two core nodes, q = 2, and seven peripheral nodes.
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Figure 5: M-maxi-core network on nine vertices with two vertices in the core.

In Appendix D we demonstrate that any sequence of the intermediate extreme point

family always satisfies Erdos-Gallai constraints (3.5) if q ∈ [2, n − 2]. However, q-maxi-

core networks are feasible if and only if the Defender has an odd number of nodes12.

If the Defender has an even number of nodes, q-maxi-core networks are never feasible

since for any q ∈ [2, n − 2], the value of a peripheral node is either not an integer,

vb = (n−1)(q−1)
q

̸∈ Z, or if it is an integer then the sum of all degrees is odd, which results

in a non-graphic sequence.

It follows that if the Defender has an even number of nodes, the only two options that

she has are a star or a complete network.

Proposition 3.4. If the Defender has an even number of nodes and chooses among all

feasible sequences which appear as extreme points of (ΥC) and (ΥP ), a star network yields

the largest payoff if c > ci, and a complete network if c < ci, where

ci = 2−
2
(
n2 − 2 + 1

)
n (n2 − 2n+ 2)

The Defender is indifferent between a star and complete network if c = ci.

Proof of Proposition 3.4. See Appendix A. ■

If the Defender has an odd number of nodes, she also has an intermediate option—an

m-maxi-core network. Utilising the results of Lemma 3.4 and Proposition 3.2, we can

12For instance, it is always possible to create a network with q = n−1
2 . In this case, any peripheral node

has value vb = n− 3. Such a sequence is always is always graphic as it satisfies Erdos-Gallai constraints

(3.5) and the sum of the degrees is even.
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formalise the optimality conditions for all feasible networks of the Defender in case she

has an odd number of nodes.

Proposition 3.5. If the Defender has an odd number of nodes and chooses among all

feasible sequences which appear as extreme points of (ΥC) and (ΥP ), a star network

yields the largest payoff if c > cmu , an m-maxi-core network if cmu > c > cl, and a complete

network if c < cl, where cl = 2− 2
n
and

cmu = 2− (6m− 4)(n− 1)− 2(m− 1)n2

(n2 − 2n+ 2) ((m− 1)n−m)
,

where m = min
{
q : (n−1)(q−1)

q
∈ Z

}
.

The Defender is indifferent between a star network and an m-maxi-core network if

c = cmu and between an m-maxi-core network and a complete network if c = cl.

Hence, if an edge is sufficiently cheap, it is optimal for the Defender to have a complete

network, despite the potential high loss from an attack, as the loss can be balanced out

by value induced by increased connectivity. On the contrary, when the cost of a link is

too expensive, it is efficient for the Defender to choose the least connected network with

the highest defence capabilities—a star network. If the cost of a connection is moderate,

the complete network is still too expensive, but the Defender can increase the efficiency

by choosing an m-maxi-core network.

Propositions 3.4 and 3.5 also demonstrate that contrary to the literature (e.g. Goyal

& Vigier, 2010, 2014), a star network does not yield the highest payoff for the Defender

in most scenarios and appears as the equilibrium only when the cost of connection is

sufficiently high.

In the following subsection, we numerically verify that the optimal solution described

in Propositions 3.4 and 3.5 are indeed the solutions to the original game.

3.4 Numerical verification

Equilibrium analysis in the previous subsection relies on the results obtained with

the help of the convex relaxation method. To back up our findings, we offer a numeri-

cal verification of our results in this subsection. We perform an iterative maximisation

procedure to find degree sequences that maximise the Defender’s expected payoff at the
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beginning of the game for a given number of nodes, n, and a given cost of an edge, c. We

describe the numerical optimisation procedure for a given number of nodes below.

1. We compose the set of degree sequences, DG, of all known complete graphs based

on the Wolfram GraphData database (Wolfram Research, 2007). Each entry in the

data set is a degree sequence corresponding to some connected graph with n nodes.

For n ≤ 10 the database is exhaustive.

2. We assign each entry of the data set DG to a certain class of networks based on the

minimum size of the Attacker’s support | suppA| = k utilising condition (2.4).

3. We then create a set of corresponding expected utility functions, DU . Each entry

of DU is the Defender’s expected utility function of the form:

U(c) =

(
1− c

2

) n∑
i=1

vi −
(k − 1)∑k

i=1
1
vi

, i ∈ [1, n].

where the size of the Attacker’s support k corresponds to the class of the networks

the entry belongs to.

4. We then iterate the cost of an edge, c, with a stepsize 10−5 and find the entry in a

set DU which attains the maximum value for a given c, max {DU : c}.

5. The entry with a maximum value for a given c is then traced back to the original

degree sequence in DG.

6. Finally, we create a data set of all global maximisers for the corresponding ranges

of cost value c.

The iterative numerical procedure allows us to efficiently identify global maximisers

for the original integer non-linear maximisation problem (3.2) for networks with n ≤ 20

nodes. The results of the numerical optimisation are illustrated in Figure 6. Figure 6a

demonstrates that when the Defender has an odd number of nodes n ≤ 19 and a single

defensive resource (δ = 1), three networks arise in the equilibrium: a complete network

if the cost of an edge is sufficiently low, an m-maxi-core network if the cost of an edge is

moderate, and a star network if the cost of an edge is sufficiently high. At the same time,

if the Defender has an even number of nodes, her choice is limited to either a complete

network, if the cost of an edge is sufficiently small, or a star network otherwise. Thus,
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the numerical analysis confirms that the optima identified in Propositions 3.4 and 3.5 are

indeed the solutions to the game if n ≤ 20.

Observe also from Figure 6a that the interval of m-maxi-core network optimality

diminishes in the number of nodes. For instance, whenever n = 19, maxi-core network

is an optimal choice for the Defender only if 1.89474 < c < 1.89521. Thus, while this

network might appear in equilibrium when the number of nodes is small, it might not be

an optimal choice for the Defender if she possesses a large number of nodes.

(a) Maximising degree sequences with an odd number of vertices

(b) Maximising degree sequences with an even number of vertices

Figure 6: Results of numerical optimisation. See Appendix E for precise values of cost

boundaries and more details on optimal maxi-core networks.

It is also evident that the cost range for complete network optimality increases in the
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number of nodes for networks with both even and odd quantities of vertices, which con-

firms the result of Proposition 3.3. Thus, with an increasing number of nodes, eventually,

a complete network becomes the only optimal choice for the Defender.

To conclude, for the base case with a single defensive resource δ = 1, the solutions to

the original problem could be found utilising a convex relaxation technique and convex

hull analysis. We observe that if some extreme point of the convex hull of the set of the

original problem yields an integer and graphic sequence, this sequence is highly likely to

be the solution for the original problem. This echoes the results of Geoffrion (1971), who

stated that if a relaxation of some integer maximisation problem yields a solution that is

feasible for the original problem and the objective function in both original and relaxed

problems are the same, then this feasible solution to the relaxed problem is highly likely

to be the solution to the original MINLP problem.

However, the numerical verification must be taken with caution. Firstly, our database

is complete only for networks with n ≤ 10, while if n ∈ [11, 20], it includes only classes of

graphs discovered and extensively described in graph theory literature. Still, for a large

number of nodes, the optimality range for the complete network covers almost the entire

feasible interval for the cost of a single connection, and, therefore, a complete network

must be the only optimal choice. Secondly, this method might overlook some maximising

degree sequence if δ ≥ 2; we discuss this limitation in Section 5.

4 Weighted version of the model

In our benchmark model, in case of a successful attack, the Defender loses the value

of a compromised vertex. However, there are two more scenarios to consider: (1) when

a successful attack results in a partial node loss rather than a complete loss, and (2)

when the damage from a successful attack is much more considerable than the value of

vertex alone. Both of those scenarios can be seen in military logistics planning13, civil

transportation planning14, and cybersecurity.

13For instance, Rogers et al. (2018) utilised simulations and “what if?” approach to analyse efficient

military logistics planning. The authors considered a situation in which some nodes and vertices of

military logistics networks are either completely destroyed or disrupted by an enemy.
14Ye and Kim (2019) analysed the vulnerability of heavy rail system networks and considered the

influence of complete and partial node failure on the efficiency of the railway networks.
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In cybersecurity, scenarios in which some node is not lost entirely or is simply disrupted

can be observed in cloud computing protection. For instance, a DDoS attack might

disrupt a cloud server dealing significant damage, but the disruption is temporary, and the

attack does not usually result in a complete loss of a cloud computing node (Deshmukh &

Devadkar, 2015; Somani et al., 2016). However, cybersecurity incidents can often result in

damage that extends way beyond the value of a damaged node. For instance, Spanos and

Angelis (2016), following their systematic literature review on the impact of information

breaches on the stock market, revealed that the majority of studies (25 studies out of 28)

find a negative impact of data breaches on the victim’s stock price. Moreover, companies

may face significant financial losses due to the reputational damage caused by a data

breach. Schwartz and Janger (2007) argue that the contemporary legal regime is focused

on incentivising business entities to address cybersecurity risks by imposing significant

reputational sanctions in case of a breach (e.g. mandatory public disclosure of a breach).

Makridis (2021) demonstrates that a data breach could lead to an up to 9% decline in

reputational intangible capital, which inevitably results in a significant loss of long-run

profits.

We introduce the weighted version of the model to account for the possibility of aug-

mentation or reduction of cyberattack damage. In this extension, we allow the expected

value function of the Defender to be a weighted linear combination of the overall network

value and the expected loss from an attack. By changing the linear coefficients, we can

adjust the Defender’s expected value function to situations in which an attack’s damage

extends beyond the value of a vertex or constitutes only a share of the vertex’s value.

The objective function of the modified Defender’s problem then has the following form:

max
vi

α

 n∑
i=1

vi −
c

2

n∑
i=1

vi

− (1− α)
(k − δ)∑k

i=1
1
vi

, (4.1)

where α ∈ [0, 1].

We now demonstrate that depending on the value of linear coefficient α, the cost

boundaries between different networks can shift.

Lemma 4.1. Any cost boundary, ci, weakly increases in the weight of the overall network

value, α.

Proof of Lemma 4.1. See Appendix A ■
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Given that introduction of the weights does not affect the set of feasible degree se-

quences Γ, it must be the case that the set of potential maximising degree sequences for

the Defender remains the same as in the unweighted case. However, Lemma 4.1 sug-

gests that depending on the weight α, cost boundaries that separate different maximising

degree sequences can shift. In practice, if the Defender prioritises the overall network

value over the potential losses from an attack (α > 0.5), denser networks will appear as

maximisers for the broader range of c. For instance, it might happen if the Defender is

confident that an attack will not cause any reputation losses and the compromised vertex

can be easily replaced (e.g. a cyberattack on some NGO, which does not possess any

financial data or trade secrets). On the contrary, if an event of a cyberattack is capable

of significant reputational damage or can even lead to the loss of a competitive edge, the

Defender might put a higher weight on an expected loss. In this case, the cost range

for which less dense networks are preferred would be extended (e.g. a cyberattack on a

financial organisation, which heavily relies on clients’ data).

Moreover, the cost range for some networks’ optimality could be diminished or in-

creased for the different values of α, as cost boundaries rates of change w.r.t. α might

differ. For instance, in the base case with δ = 1, if the Defender puts high weight on an

expected loss from an attack (α < 1
2
), the interval of m-maxi-core optimality might be

significantly increased.

Claim 4.1. If the Defender has one defensive resource δ = 1, the optimality range for

an m-maxi-core network, δMC = cαu − cαl , strictly decreases in α, ∂δmc

∂α
< 0.

Proof of Claim 4.1. See Appendix A. ■

Thus, it follows from Claim 4.1 that if α < 1
2
the optimality ranges for m-maxi-core

networks can be larger than the ones demonstrated in Figure 6a.

Furthermore, observe that the boundaries can shift to the point where only a complete

or star network can be optimal for the Defender. When α → 1, the benefits of building a

well-connected network vastly outweigh the security risks, while when α → 0, the damage

from an attack is so severe that the Defender’s only concern is network security. This

observation also implies that shifting the boundaries through changing the weight α can

influence the size of the set of maximising degree sequences.
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5 Limitations and future research

This section offers a concise discussion of limitations and future research.

5.1 Limitations

Section 3 of this paper relies on the convex relaxation technique and characterises

the solution for the relaxed Defender’s maximisation problem. This technique has two

limitations:

Non-convex regions of Γ. By convexifying set Γ and extending the set of fea-

sible values to the convex hull, we potentially might lose some global maximisers

that appear on the non-convex regions of the original set. While we numerically

verified that the global maximisers for the original problem indeed coincide with

the analytical solution to the relaxed problem when δ = 1 and n < 20, it might

not be true for a more general case. Moreover, any potential error from a convex

relaxation approach is likely to be small, because a complete network is optimal for

a wide range of c when n ≤ 20 (e.g. for any c < 1.9 when n = 20) and will be

optimal for an even bigger range of c as n increases further.

Relaxation of Erdos-Gallai graphicality conditions. During the integer re-

laxation performed as a part of a convex relaxation, we relaxed the integrality

constraints (3.3) and Erdos-Gallai sufficient and necessary conditions for the se-

quence graphicality. While the former should not lead to a loss of solutions since

the objective function (3.2) is convex, the latter might result in losing some of the

extreme points defined by graphicality conditions. While we numerically verified

for δ = 1 and n < 20 that it is not the case, it might happen when the Defender has

some ad-hoc number of defensive resources δ ≥ 2. This is because the expected gain

from an attack strictly decreases in δ, implying that the Attacker’s support condi-

tions (3.6) are the tightest when δ = 1. Thus, with additional defensive resources

and loosening of the Attacker’s support condition (3.6), the Erdos-Gallai conditions

play a more prominent role. For instance, one can observe that the degree sequence

(4, 2, 2, 1, 1) in Figures 2 and 3 arises as a global maximiser for some intermediate

cost of a single edge ci < c < cu. However, this sequence does not appear as an

extreme point of the set defined by linear constraints (3.4) or Attacker’s support
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constraints (3.6) and (3.7). Therefore, it must be the case that this degree sequence

results from the intersection of Erdos-Gallai conditions with some other constraints

of the set. It also implies that with additional defensive resources, the problem

might have a larger set of maximising degree sequences.

To conclude, the presented approach might not be efficient in solving the Defender’s

optimisation when δ ≥ 2. We see two possibilities on how to approach a more general

case:

1. Numerical estimation. The iterative numerical estimation demonstrated its ef-

ficiency for reasonably small networks. Once one possesses the complete data set

of all available graphs on n nodes, there should be no computational limitations

for obtaining optimal solutions for a given value of c. However, given the size of

the data sets of all connected networks for a larger number of nodes, this method

might not be efficient for larger n. In this case, the approximate solutions can be

obtained utilising heuristic methods for non-convex and combinatorial optimisation

e.g. Eichfelder et al., 2021; Xu et al., 2020. These methods are out of the scope of

this paper.

2. Scope reduction. It might also be possible to approach a general case with δ ≥ 2

by narrowing down the set of possible networks. For instance, reducing the scope

to bipartite graphs15 or networks which only have two types of nodes will result in

a much simpler model, which might have an analytical solution for the general case.

5.2 Future research

Large networks The presented model demonstrates that the only network which ap-

pears in the equilibrium of a game with a large number of nodes (n→ ∞) is a complete

network. This is because a successful attack can compromise only an infinitesimal share

of the network’s overall value. We consider developing an alternative setting with a more

sophisticated vertex value function (e.g. a network size inflated vertex value function

vi = ndi, where di is the vertex’s degree centrality and n is the number of vertices in the

network), which might lead to new results about the formation of large networks.

15A bipartite graph is a graph whose nodes can be separated into two disjoint sets T1 and T2, i.e. is

every edge connects a node in set T1 to one in set T2.
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Multiple offensive resources The baseline model considers the case where the At-

tacker has a single offensive resource. The framework is helpful for analysing the en-

terprise’s cybersecurity capabilities against targeted information leakage attacks, as it is

usually sufficient to compromise a single entry point to deal severe damage to the enter-

prise. Nevertheless, it does not cover the situation in which the network faces multiple

attacks simultaneously (e.g. airstrikes on the military supply chain in several directions).

The presented model can be extended to account for this possibility, but finding the

equilibrium might be intractable in the general case. This is because if the Attacker has

multiple offensive resources, the Attacker’s support condition will no longer be monotonic,

which makes it challenging to derive the corresponding constraints for the optimisation

problem. We consider the development of an alternative attack mechanism in which the

Attacker can choose some set of nodes for an attack following a defined rule (e.g. he can

choose to attack all nodes with a specific value or choose a share of nodes in the network

which will be attacked at random). This extension can provide insights into the network

defence against various attack regimes.

Probabilistic defence function The deterministic defence function (when the De-

fender always wins the contest on the same vertex as the Attacker) might not correspond

well to some real-life scenarios (e.g. air traffic security). Our model might be extended

by imposing some probabilistic contest success function in the fashion of a rent-seeking

contest (Gradstein & Konrad, 1999). We consider this extension for future research.

Edge attacks The baseline model assumes that the Attacker can only compromise

nodes. Nevertheless, it is still possible to encounter situations where the attack targets

connections between the nodes rather than the nodes themselves. We consider building

an extended model which allows the Attacker to attack both edges and nodes to account

for this opportunity.

Artificial intelligence Our game-theoretical formulation of the network design and

defence problem can be used to create more sophisticated reward functions and serve as a

benchmark for comparing reinforcement learning algorithms. We consider this possibility

for future research.
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6 Conclusion

In this study, we characterise efficient network formation in the presence of an in-

telligent attacker. In particular, the study investigates the trade-off between efficiency

and security when the values of vertices are determined endogenously and are allowed

to be heterogeneous. The model produces three main results. Firstly, it shows that a

star network, contrary to the literature (e.g. Goyal & Vigier, 2010), does not generally

yield the highest payoff for the Defender. A star network yields the lowest expected loss

from an attack. Still, it is the least efficient connected network structure, which appears

in equilibrium only if the cost of a single connection is sufficiently high. Secondly, we

demonstrate that the density of an optimal network decreases with an increase in the

cost of an edge. Finally, the study reveals a novel type of network, which appears in the

equilibrium of games with scarce defensive resources—a maxi-core network with a com-

pletely connected core and sparse periphery. Moreover, we have presented a weighted

model modification, which allows us to account for potential reputational losses from a

cyberattack and partial vertex loss.
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Erdős, P., & Gallai, T. (1960). Gráfok elő́ırt fokszámú pontokkal. Matematikai Lapok, 11,
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A Mathematical appendix

Proof of Claim 2.4. Suppose that vertex m < l is not attacked in some equilibrium,

in which l is attacked. Then m is not defended by Claim 2.3. The expected payoff from

attacking m is vm, which is greater than the upper bound of the expected payoff from

attacking l, vl. Therefore, there is a profitable deviation: attacking m with probability

1. If the inequality is weak, i.e. vl = vm, we can relabel the nodes and preserve the

monotonicity of the payoffs in the assumption. ■

Proof of Claim 2.5. From (2.2) we have the following condition for the top k vertices

to be attacked:
vk
v1

+
vk
v2

+ · · ·+ vk
vk−1

+
vk
vk

≥ k − δ.

Rearranging and simplifying yields:

vk
v1

+
vk
v2

+ · · ·+ vk
vk−1

≥ k − 1− δ,

which, because vk−1 ≥ vk, implies condition for the top k − 1 vertices. ■

Proof of Claim 2.6. Suppose the condition (2.4) holds strictly for some node k and

does hold for node k + 1.

The Attacker’s gain from an attack on top k nodes is then:

A(vk) =
(k − δ)∑k

i=1
1
vi

.
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If the Attacker chooses to mix over k−1 nodes, then by Lemma 2.4, the Defender protects

only k − 1 nodes with positive probability. Then, the Attacker’s gain is

A(vk−1) =
(k − δ − 1)∑k−1

i=1
1
vi

.

We now demonstrate that:

A(vk) > A(vk−1). (A.1)

Expanding (A.1) yields:
(k − δ)∑k

i=1
1
vi

>
(k − δ − 1)∑k−1

i=1
1
vi

,

(k − δ)
k−1∑
i=1

1

vi
> (k − δ − 1)

k∑
i=1

1

vi
,

(k − δ)
k−1∑
i=1

1

vi
− (k − δ − 1)

k∑
i=1

1

vi
> 0,

and finally:

vk >
(k − δ − 1)∑k−1

i=1
1
vi

,

which is always satisfied by the assumption that that condition (2.4) holds strictly for

node k.

Thus, if the Attacker deviates to smaller support, he receives a strictly smaller payoff.

■

Proof of Claim 2.7. Suppose that for some node y condition (2.4) holds strictly, while

for nodes ν ∈ (y, y + z], where z ∈ [1, n− y] and z ∈ Z, it holds with equality.

The expected gain of the Attacker from an attack on top k nodes is:

A(v⃗y) =
(y − δ)∑y

i=1
1
vi

.

Then it follows from condition (2.4) must be the case that each node indexed ν ∈ (y, y+z]

must be vν = A(v⃗y) = −D(v⃗y).

Then the expected payoff from an attack on top y + z nodes is:

A(v⃗y+z) =
(y + z − δ)∑y
i=1

1
vi
+ z

(y−δ)∑y
i=1

1
vi

=

=
(y + z − δ)∑y
i=1

y+z−δ
(y−δ)vi

=
(y − δ)∑y

i=1
1
vi

= A(v⃗y).

(A.2)
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Since equality (A.2) is satisfied regardless of the quantity of nodes that pass condition

(2.4), it must be the case that A(v⃗y+z) = −D(v⃗y+z) for any | suppA | ∈ [y, y + z]. ■

Proof of Lemma 2.1. Let (y1, . . . , yk) ∈ Rk
+ and (z1, . . . , zk) ∈ Rk

+.

Consider Defender’s expected loss function (2.5) rewritten as:

A(y) =
k − δ

g(y)
,

where g(y) = 1
y1

+ . . .+ 1
yk
.

Consider now function g(y). Via the Cauchy-Schwarz inequality:

1

y1
+ . . .+

1

yk
=

(√
z1
y1

, . . . ,

√
zk
yk

)
·

(
1

√
z1
, . . . ,

1
√
zk

)

≤

(
z1
y21

+ . . .+
zk
y2k

) 1
2 (

1

z1
+ . . .+

1

zk

) 1
2

.

(A.3)

Now we rewrite the function as:(
1

z1
+ . . .+

1

zk

)−1

≤

(
z1
y21

+ . . .+
zk
y2k

)(
1

y1
+ . . .+

1

yk

)−2

. (A.4)

Observe that the right-hand side of (A.4) is exactly the tangent plane of the left-hand

side at some point (y1, . . . , yk). Since the inequality holds for any such point (y1, . . . , yn),

the left-hand side is a concave function. It immediately follows that A(v⃗k) is concave,

while D(v⃗k) is convex.

■

Proof of Proposition 2.1. Consider the expected attack on k nodes in general form:

A(vk) =
k − δ∑
i∈K

1
vi

,

where K = suppA.

Consider now the first derivative of A(vk) w.r.t. the value of some node j ∈ K:

∂A(vk)

∂vj
=

k − δ(∑
i∈K

1
vi

)2
v2j

> 0, (A.5)

which is always positive.

It follows that the expected gain from an attack on k nodes attains its maximum value

when all nodes attain value vq = n− 1. Substituting vi = vq = n− 1, ∀i ∈ K yields:

Amax(vk) =
(k − δ)(n− 1)

k
. (A.6)
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Now consider the first derivative of Amax(vk) w.r.t. k:

∂A(vk)

∂k
=
δ(n− 1)

k2
> 0.

It implies that the maximum gain from an attack is attained whenever k = n and the

game is played on a complete network. In this case, the Attacker’s payoff is:

Ac =
(n− 1)(n− δ)

n
.

We demonstrate that the Attacker obtains the minimum payoff when the game is

played on a star network. Consider two cases: (1) full support case k = n, and (2) partial

support case with k < n.

Case 1. k = n. By Lemma 2.1, the expected gain from an attack on k nodes is

concave. Thus, by the Bauer minimum principle, it must attain the minimum value at

some extreme point of the set of feasible values. In the full support support case each

vi ∈ {1, n−1}. Therefore, each extreme point can be represented as the following ordered

set:

ven =

n− 1, · · · , n− 1︸ ︷︷ ︸
q

, 1, · · · , 1︸ ︷︷ ︸
n−q

 . (A.7)

The expected attack on the network with degree sequence (A.7) is16:

Aq(ven) =
(n− δ)
q

n−1
+ n− q

.

Since we demonstrated that ∂Aq(vn)
∂vi

> 0, ∀i ∈ N , it must be the case that Aq(ven) is

minimised when the Defender chooses the minimum possible number of completely con-

nected nodes. As we assume that any network must be connected, qmin = 117. Therefore,

it implies that the expected gain from an attack attains its minimum when the game is

played on a star network. It can be written down as follows:

As =
(n− δ)(n− 1)

(n− 1)2 + 1
< 1. (A.8)

Observe that (A.8) is strictly smaller than 1.

16We ignore the fact that any node of value vu = 1 would not be included in the Attacker’s support

for now
17Observe that choosing q = 0 yields a disconnected network with degree sequence (1, · · · , 1).
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Case 2. k < n. Observe that if k nodes are included in the Attacker’s support, it

implies that the expected attack on the top k nodes is strictly larger than 1. If it is

smaller than 1, then any node of value vi ≥ 1 must also be included in the Attacker’s

support, which yields a full support case and contradicts the partial support assumption.

Therefore, the Attacker’s payoff is minimised when the game is played on a star

network.

■

Proof of Proposition 3.1. Observe that expected value function of the Defender (3.1)

is linear in c. Therefore, we can represent the utility function for any possible network

formation as a straight down-sloping line defined over c ∈ [0, 2]. Consider two cases:

Case 1. c = 2. In this case, the Defender does not attain any value from network’s

connectivity and her payoff is equal to the expected loss in the encounter stage.

Now note that line equations associated with star and path networks have the lowest

possible slope among all the networks, since both of those networks have the lowest

possible overall nodes’ value, which is equal to S = −2(n − 1). However, we know

from Claim 2.1 that the Defender minimises her losses whenever she chooses a star, and,

therefore, an equation associated with star has a larger intercept. An intercept of a line

associated with a star network is I = 2(n−1)− (n−1)(n−δ)
(n−1)2+1

. It implies that a star is certainly

preferred to a path network around c = 2. Therefore, there must exist some point cu < 2

in the neighbourhood of 2, where the line spawned by star formation is intersected by

some line spawned by the network, which is optimal for the Defender if c = cu− ϵ (where

ϵ is some small positive real number). We call cu an upper-cost boundary.

Case 2. c = 0. If the edges are free for the Defender, the expected value function

becomes:

UG(v⃗n) =
n∑
i=1

vi +D(v⃗k), (A.9)

which is also convex and, therefore, must attain its maximum at some extreme point of

the set it is defined over.

Firstly, observe that (A.9) is maximised whenever the Defender chooses a complete

network. Consider the first derivative of the function w.r.t. to the value of some vertex
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inside the Attacker’s support:

∂UG(v⃗n)

∂vi
= 1 +

(k − δ)
∏k

j=1 vj
∑

j∈K\{i}
∏

i ̸=j vi(∑k
j=1

∏
i ̸=j vi

)2
︸ ︷︷ ︸

m1

−
(k − δ)

∏k
j=1 vj

vk
∑k

j=1

∏
i ̸=j vi︸ ︷︷ ︸

m2

> 0, (A.10)

where K is the set of indices of all vertices in the Attacker’s support.

Observe that term m1 is positive and term m2 ≤ 1 as it is exactly the Attacker’s

support condition (2.4). It follows that the function (A.9) always increases in the value

of vertex inside the Attacker’s support. If some vertex j is outside the Attacker’s support

the first derivative of UG(v⃗n) w.r.t. to vj is constant and equal to one, ∂UG(v⃗n)
∂vi

= 1.

The vertices outside the Attacker’s support are also bounded from above by the

Attacker’s support condition. Given that the Defender chooses vi = vq = n − 1, we

can write down the upper boundary for the vertices outside the Defender’s support as

vj ≤ (k−δ)(n−1)
k

. It is now left to demonstrate that if c = 0, the Defender is strictly

better off to choose a complete network than any other network which does not have full

support:

n(n− 1)− (n− δ)(n− 1)

n
> k(n− 1) + (n− k − 1)

(k − δ)(n− 1)

k
,

which is true for any n > k > 2.

We deduce that it must be the case that at extreme point c = 0, the Defender receives

a maximum possible payoff whenever she chooses a complete network formation. It also

follows that the line spawned by complete network formation must have the highest

intercept point with the ordinate axis. Given that the line also must have the steepest

slope, we conclude that there must exist some dot cl > 0 in the neighbourhood of 0 where

it is intersected by some other line spawned by the network formation, which is optimal

if c = cl + ϵ. We call cl a lower cost-boundary. ■

Proof of Proposition 3.2. Observe that the value of the network (2.1) strictly in-

creases in vi for any c < 2. We also know from Lemma 2.1 that the expected damage

from an attack weakly increases in the value of a single vertex vi.

Now observe the indifference condition for the Defender between some dense structure

GD and some sparse structure GS:
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VD − c

2
VD +DD = VS −

c

2
VS +DS,

or:

c = 2 +
DD −DS

VD − VS
= ci. (A.11)

Now observe that the dense graph is preferred to the sparse graph if c < ci, and vice

versa if c > ci. As this fact applies to any pair of network structures, it must be the case

that less dense maximising degree sequences are associated with a higher cost of a single

edge, while higher density maximising degree sequences are associated with a lower edge

cost. ■

Proof of Proposition 3.3. If the Defender possesses n → ∞ vertices and δ ≥ 1

defensive resources, there might be ∞ potential maximising degree sequences and ∞ cost

boundaries as a result. The only fact we know about all other non-extreme potential

maximising degree sequences is that they must be of lower density than the complete

network. Consider some cost boundary cfi , which is derived by comparing the complete

network and some other network with Attacker’s support k ∈ [δ + 1, n]:

cfi = 2−

(n−δ)(n−1)
n

− n−δ∑k
i=1

1
(n−1)ei

n(n− 1)−
∑n

i=1(n− 1)ei
=

= 2−
(n− d)

(
1
n
− 1∑k

i=1
1
ei

)
n−

∑n
i=1 ei

,

(A.12)

where ei =
vi
n−1

and vi is the value of some node i of some other network. Since vi ∈

[1, n− 1], it follows that ei ∈
[

1
n−1

, 1
]
.

Thus, ei is a coefficient calculated as a portion of the number of connections incident

upon a vertex and the maximum possible connections that the node might have (n− 1).

Given that we assume that nodes’ values of each network are weakly ordered it follows

that coefficients must be order weakly ordered too: e1 ≥ e2 ≥ . . . ≥ en. Note that

any incomplete network must have 1 ≤ q < n completely connected vertices, for which

eCi = 1, and n− q vertices with lower degree centralities, for which eNCi ∈
[

1
n−1

, 1
)
.

Now, let

HM(e1, . . . , ek) =
k∑
i=1

1

ei
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be the Harmonic Mean of first k coefficients and

AM(e1, . . . , en) =
1

n

n∑
i=1

ei

be the Arithmetic Mean of all n coefficients.

Then expression (A.12) can be rewritten as:

cfi = 2−
(
n− δ

n2

)(
1−HM(e1, . . . , ek)

1− AM(e1, . . . , en)

)
︸ ︷︷ ︸

τ

. (A.13)

Now we consider the upper-bound for the numerator of τ and the lower bound of the

denominator of τ .

The upper-bound of the numerator of τ can be expressed as (Sýkora, 2009):

1−HM(e1, . . . , ek) ≤ 1−min(e1, . . . , ek) = 1− ek < 1.

Consider now the denominator of τ . Since ei’s are nonincreasing and ei < 1 for all

i > q, there must exist ι ∈ N such that for all n ≥ ι:

AM(e1, . . . , en) ≤ AM(e1, . . . , eι) < 1.

Then then lower bound of the denominator of τ can be expressed as:

1− AM(e1, . . . , en) ≥ 1− AM(e1, . . . , eι) = τL > 0,

which is a positive constant for any fixed number ι ∈ N and ι > q.

Thus, we can now write the upper and lower bounds of expression (A.13):

2−
(
n− δ

n2

)(
1

τL

)
≤ cfi ≤ 2,

where the upper boundary is achieved when the Attacker has only completely connected

nodes in his support, k ∈ [1, q].

Finally, consider now the limit of the lower boundary of cfi when n→ ∞:

lim
n→∞

2−
(
n− δ

n2

)(
1

τL

)
= 2.

Then, by Squeeze Theorem, cfi = 2 as n→ ∞ (Weisstein, n.d.). ■
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Proof of Lemma 3.1. Consider the first derivative of expected utility function of the

Defender (3.20) w.r.t. vsj :

∂UP

∂vsj
= 1− c

2
≥ 0.

Therefore, the Defender must always choose the maximum possible value for the nodes

outside the Attacker’s support. Observe that the upper limit of a value of a node outside

that Attacker’s support is given by constraint (3.13) and is equal to the expected gain

from an Attack on top k nodes. ■

Proof of Lemma 3.2. From Proposition 3.1, we know that a complete and a star

network must be maximisers at the extreme values of c. Therefore, we sequentially

compare all the sequences (3.18)-(3.25) against a star network and a complete network

and determine which sequences can act as maximisers for intermediate values of c.

First, observe the Defender’s expected payoffs from a game on a star network:

U∗ = 2

(
1− c

2

)
(n− 1)− (n− 1)2

(n− 1)2 + 1
,

and complete network:

UC = n

(
1− c

2

)
(n− 1)− (n− 1)2

n
.

Intermediate sequence An expected Defender’s payoff from a game on an interme-

diate sequence (3.18) can be stated as follow:

UI =

(
1− c

2

)(
(n− 1)(q − 1)(n− q)

q
+ (n− 1)q

)
− (n− 1)(q − 1)

q
,

where q ∈ [2, n− 1].

The Defender prefers an intermediate sequence to a star network when:

UI > U∗,

which is satisfied IFF:

c < 2− 2n2(q − 1)− n(6q − 4) + 6q − 4

(n2 − 2n+ 2) (n(q − 1)− q)
= cu. (A.14)

Similarly, the Defender prefers an intermediate sequence to a complete network when:

UI > Uc,
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which is satisfied when:

c > 2− 2

n
= cl.

Now observe that cu > cl:

2− 2n2(q − 1)− n(6q − 4) + 6q − 4

(n2 − 2n+ 2) (n(q − 1)− q)
> 2− 2

n
. (A.15)

Rearranging and simplifying (A.15) yields:

(n− 2)n
(
n2 − 2n+ 2

)
q(n(q − 1)− q) > 0,

which is always satisfied for any n > q ≥ 2.

Therefore, if cl < c < cu, the optimal choice for the Defender is an intermediate

sequence.

Now observe, that if cl < c < cu, the optimal intermediate sequence has q = 2. To see

that observe the first derivative of UI w.r.t. to q:

∂UI
∂q

= −(n− 1)((c− 2)n+ 2)

2q2
,

which is always positive if c > 2− 2
n
= cl and negative otherwise.

Since when c > cl it is always optimal for the Defender to choose a complete network,

it must be the case that in the range of intermediate sequence optimality, the Defender

must choose an intermediate sequence with q = 2. Then the condition (A.14) becomes:

2− 2n− 4

n2 − 2n+ 2
.

Lower family The Defender’s expected payoff in a game in which she chooses a lower

family sequence (3.19) is:

UL =

(
1− c

2

)(
n− 1

n− 2
+ 2n− 3

)
− 1.

The Defender prefers a lower family sequence to the star network when:

UL > U∗,

which is satisfied when:

c < 2− 2n− 3

n2 − 2n+ 2
= c1L.

The Defender prefers a lower family sequence to an intermediate sequence with q = 2

when:

UL > UI ,
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which is satisfied when:

c > 2− 2n− 3

n2 − 2n+ 2
= c2L.

Since c1L = c2L, the Defender never prefers a lower family sequence to a star or an inter-

mediate sequence. However, she is indifferent between star, lower family sequence, and

intermediate sequence if c = c1L = c2L.

k-family An expected payoff in a game in which the Defender chooses a k-family se-

quence (3.23) is:

UK =

(
1− c

2

)(
k2

k − 1
− k + n

)
− 1.

Observe that the Defender prefers a k-family sequence to a star sequence if:

UK > U∗,

which satisfied IFF:

c > 2 +
2(k − 1)

((n− 2)n+ 2)(k(n− 3)− n+ 2)
> 2,

which is always larger than 2 for any n ≥ 4.

It implies that any sequence of the k-family cannot be a maximiser for the relaxed

optimisation problem.

Quasi-star partial family The Defender’s expected payoff from a game when she

chooses a family (3.24) is:

UQS =

(
1− c

2

)(k − 1)(n− k)
(k−1)2

k
+ 1

n−1

+ k + n− 1

− k − 1
(k−1)2

k
+ 1

n−1

.

First, observe that UQS > U∗ IFF:

c < 2−
2(n− 1)

(
k2 + k(n− 3)n+ k − (n− 1)2

)
((n− 2)n+ 2)

(
k2 + k(n− 2)(n− 1)− (n− 1)2

) = c1qs.

Now observe that UQS > UC IFF:

c > 2−
2(n− 1)

(
(k − 1)2n2 − 3(k − 2)kn+ (k − 3)k − 2n+ 1

)
n
(
k2(n((n− 4)n+ 5)− 3)− 2k(n− 2)(n− 1)2 + (n− 1)3

) = c2qs.

We now demonstrate that c2qs > c1qs:

2−
2(n− 1)

(
(k − 1)2n2 − 3(k − 2)kn+ (k − 3)k − 2n+ 1

)
n
(
k2(n((n− 4)n+ 5)− 3)− 2k(n− 2)(n− 1)2 + (n− 1)3

) >
2−

2(n− 1)
(
k2 + k(n− 3)n+ k − (n− 1)2

)
((n− 2)n+ 2)

(
k2 + k(n− 2)(n− 1)− (n− 1)2

) , (A.16)
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Rearranging and simplifying (A.16) yields:(
k2(n((n− 4)n+ 5)− 3)− 2k(n− 2)(n− 1)2 + (n− 1)3

)︸ ︷︷ ︸
τ1(

k2 + k(n− 2)(n− 1)− (n− 1)2
)︸ ︷︷ ︸

τ2

(k(k(n− 1)− 2n+ 3) + n− 1)︸ ︷︷ ︸
τ3(

k2 + k((n− 4)n+ 2)− (n− 1)2
)︸ ︷︷ ︸

τ4

> 0

(A.17)

We now consider first derivatives of τ1, τ2, τ3, and τ4 w.r.t. k.

τ1:
∂τ1
∂k

= 2k(n((n− 4)n+ 5)− 3)− 2(n− 2)(n− 1)2. (A.18)

To analyse the sign of (A.18) we now consider the second derivative of τ1 w.r.t. k:

∂2τ1
∂k2

= 2(n((n− 4)n+ 5)− 3) > 0, (A.19)

which is always positive for any n > 3. Now consider the sign of the first derivative

(A.18) when k = 2:
∂τ1
∂k

= 2n((n− 4)n+ 5)− 8 > 0, (A.20)

which is always positive for any n > 3.

τ2 :
∂τ2
∂k

= 2k + (n− 2)(n− 1) > 0,

which is always positive for any n > k ≥ 2.

τ3 :
∂τ3
∂k

= 2k(n− 1)− 2n+ 3 > 0.

which is always positive for any n > k ≥ 2.

τ4 :
∂τ4
∂k

= 2k + (n− 4)n+ 2 > 0.

which is always positive for any n > k ≥ 2.

Since
∂τj
∂k

> 0, ∀j ∈ {1, 2, 3, 4}, it is sufficient to verify condition (A.17) when k = 2.

Substituting k = 2 and simplifying (A.17) yields:
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(n− 2)(n− 1)n(n+1)((n− 6)n+7)((n− 4)n+7)((n− 2)n+2)(n((n− 3)n+3)− 5) > 0,

which is always positive for any n ≥ 5.

It implies that sequence (3.24) cannot be a maximiser for the relaxed maximisation

problem.

Lower partial family The Defender’s expected payoff from a game when she chooses

a sequence (3.25):

ULP =

(
1− c

2

)(
k(n− 2)

k − 1
+

k(n− 1)

k(n− 2)− n+ 1
+ n− 1

)
− k

k − 1
.

Observe that ULP > U∗ IFF:

c < 2−
2
(
k + (n− 1)2

)
(k(n− 2)− n+ 1)

((n− 2)n+ 2)
(
k2 + k(n− 2)(n− 1)− (n− 1)2

) = c1LP .

Similarly, ULP > UI IFF:

c > 2− 2kn− 4k − 2n+ 2

k((n− 2)n+ 2)− n2 + n
= c2LP .

Now observe that c2LP > c1LP :

2−
2
(
k + (n− 1)2

)
(k(n− 2)− n+ 1)

((n− 2)n+ 2)
(
k2 + k(n− 2)(n− 1)− (n− 1)2

) < 2− 2kn− 4k − 2n+ 2

k((n− 2)n+ 2)− n2 + n
.

Rearranging and simplifying yields:

λ
(
k2 + k(n− 2)(n− 1)− (n− 1)2

)
(k(n− 2)− n+ 1)

(
k((n− 2)n+ 2)− n2 + n

)
> 0,

(A.21)

where λ = (k − 1)(n− 2)(n− 1)2((n− 2)n+ 2)(k(n− 2)− n+ 1) > 0.

Dividing both sides of (A.21) by λ yields:

(
k2 + k(n− 2)(n− 1)− (n− 1)2

)︸ ︷︷ ︸
ι1

(
k((n− 2)n+ 2)− n2 + n

)︸ ︷︷ ︸
ι2

> 0.

Now consider first derivatives of ι1 and ι2 w.r.t. k:

∂ι1
∂k

= 2k + (n− 2)(n− 1) > 0,
∂ι2
∂k

= (n− 2)n+ 2 > 0,

which are always positive.
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Thus, it is sufficient to verify that the condition is satisfied when q = 2:

(
n2 − 4n+ 7

) (
n2 − 3n+ 4

)
> 0,

which is always positive.

It follows that sequence (3.25) cannot be a maximiser either.

■

Proof of Claim 3.2. First consider family (3.19). The second largest element of this

family always has the following form:

v2 =
n− 1

n− 2
= 1 +

1

n− 1
,

which is not integer.

Now consider family (3.23). The first k elements of the k-family have the following

form:
k

k − 1
= 1 +

1

k − 1
,

which is integer only when k = 2.

Thus, the only sequence which belongs to k-family and graphic is a degree sequence

with n = 4 and k = 218. However, this sequence is always dominated by a star network.

To see then consider the Defender’s expected utility functions from games on a star

network (U∗) and on a k-family network (UK), when n = 4 and q = 2:

U∗ = 2(1− c

2
)(n− 1)− (n− 1)2

(n− 1)2 + 1
= 51/10− 3c,

UK =

(
1− c

2

)(
2k

k − 1
− k + n

)
− 1 = 5− 3c.

Thus, U∗ > UK .

Now consider a quasi-star family (3.24). As was stated above any element which has

value k
k−1

is integer IFF k = 2. Then elements indexed j ∈ (k, n] have value:

vk =
k − 1

(k−1)2

k
+ 1

n−1

=
2(n− 1)

n+ 1
= 2− 4

n+ 1
,

which is integer IFF n = 3.

18Any sequence with n > 4 does not pass the Erdos-Gallai constraint (3.5) and, therefore, is not

graphic.
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However, eqrefquasi-star family sequence with n = 3 elements and k = 2 is not graphic

(2, 2, 1).

The last sequence to consider is lower partial family sequence. However, this family

exists only when k ≥ 3, and therefore any element of value k
k−1

is not integer.

■

Proof of Lemma 3.3. The Defender’s expected payoff at the beginning of the game

on a star network:

U∗ = 2

(
1− c

2

)
(n− 1)− (n− 1)2

(n− 1)2 + 1
,

and on a complete network:

UC = n

(
1− c

2

)
(n− 1)− (n− 1)2

n
.

An expected Defender’s payoff from a game on a sequence of the intermediate family

(3.18) is:

UI =

(
1− c

2

)(
(n− 1)(q − 1)(n− q)

q
+ (n− 1)q

)
− (n− 1)(q − 1)

q
,

where q ∈ [2, n− 1].

An intermediate sequence is preferred to a star network if:

UI > U∗,

which is satisfied IFF:

c < 2− 2n2(q − 1)− n(6q − 4) + 6q − 4

(n2 − 2n+ 2) (n(q − 1)− q)
= cqu. (A.22)

Similarly, the Defender prefers an intermediate sequence to a complete network when:

UI > UC ,

which is satisfied when:

c > 2− 2

n
= cl.

Now observe that cqu > cl:

2− 2n2(q − 1)− n(6q − 4) + 6q − 4

(n2 − 2n+ 2) (n(q − 1)− q)
> 2− 2

n
. (A.23)
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Rearranging and simplifying (A.23) yields:

(n− 2)n
(
n2 − 2n+ 2

)
q(n(q − 1)− q) > 0,

which is always satisfied for any n > q ≥ 2.

Therefore, if cl < c < cqu, the optimal choice for the Defender is an intermediate family

sequence. ■

Proof of Lemma 3.4. Consider the first derivative of the objective function of max-

imisation problem (3.4) w.r.t. q:

∂UI
∂q

= −(n− 1)(n(c− 2) + 2)

2q2
. (A.24)

Observe that the sign of (A.24) does not depend on q itself, but rather on the cost of

connection, c, relative to the overall number of vertices. Partial derivative ∂UI

∂q
is positive

whenever c < 2− 2
n
and negative whenever c > 2− 2

n
. The Defender is indifferent between

any quantity of completely connected nodes if c = 2− 2
n
. ■

Proof of Proposition 3.4. Consider expected payoffs of the Defender at the beginning

of the game on a star network:

U∗ = 2

(
1− c

2

)
(n− 1)− (n− 1)2

(n− 1)2 + 1
,

and on a complete network:

UC = n

(
1− c

2

)
(n− 1)− (n− 1)2

n
.

A star network is preferred to a complete network if U∗ > UC , which is true IFF:

c > 2−
2
(
n2 − 2 + 1

)
n (n2 − 2n+ 2)

= ci

■

Proof of Lemma 4.1. Suppose the Defender must choose between two network struc-

tures G1 and G2. Assume that the overall value of degree sequence G1 is larger than the

overall value of G2: V1 > V2. Then it must be the case that the expected payoff of the

Defender in the encounter stage from the game on G1 is weakly smaller than an expected
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payoff on the game G2: D1 ≤ D2. Now observe that the Defender is indifferent between

the two structures IFF:

c12 = 2− (1− α)(D2 −D1)

α(V1 − V2)
. (A.25)

Now consider the first derivative of the boundary (A.25) with respect to α:

∂c12
∂α

=
D2 −D1

α2 (V1 − V2)
≥ 0.

Therefore, any cost boundary weakly increases in α. ■

Proof of Claim 4.1. Consider weighted expected utility functions of the Defender

from games on a star, complete, and m-maxi-core networks:

Uα
∗ = 2α

(
1− c

2

)
(n− 1)− (1− α)(n− 1)2

(n− 1)2 + 1
, (A.26)

Uα
C = α

(
1− c

2

)
(n− 1)n− (1− α)(n− 1)2

n
, (A.27)

Uα
MC = α

(
1− c

2

)(
(n− 1)(q − 1)(n− q)

q
+ (n− 1)q

)
− (1− α)(n− 1)(q − 1)

q
.

(A.28)

An m-maxi-core network is preferred to a star and complete network IFF:

2 +
2(α− 1)

αn︸ ︷︷ ︸
=cαl

< c < 2 +
2(α− 1)(n(n(q − 1)− 3q + 2) + 3q − 2)

α((n− 2)n+ 2)(n(q − 1)− q)︸ ︷︷ ︸
=cαu

.

Now consider the size of optimality interval δMC = cαu − cαl :

δMC =
2(α− 1)(n− 2)q

αn((n− 2)n+ 2)(n(−q) + n+ q)
.

Now consider the first derivative of δMC w.r.t α:

∂δMC

∂α
=

2(n− 2)q

α2n((n− 2)n+ 2)(n+ q − nq)
< 0.

Since (n+ q − nq) < 0, it follows that ∂δMC

∂α
is always negative.

■
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B Supplementary material

Erdos-Gallai theorem is a known results from graph theory proposed by Erdős and

Gallai (1960). The theorem solves the graph realisation problem, i.e. provides a set of

necessary and sufficient conditions for a finite sequence of positive integer numbers to

be the degree sequence of a graph. The sequence that satisfies the conditions is said to

be “graphic”. The original theorem demonstrated that a sequence of positive integers

d1 ≥ · · · ≥ dn is graphic IFF
∑n

i=1 di is even and:

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(di, k)

holds for ∀k ∈ [1, n].

Therefore, Erdos-Gallai conditions ensure that any given node does not have more

links than can be supported by the degrees of all other nodes in the network.

C Extreme points characteristics and the convex hull

The non-convexity of set Υ is caused by non-convex constraints (3.12). Given that

non-convex constraints are defined by smooth concave functions (by Lemma 2.1), we can

construct a convex hull of set Υ, (Υ) by replacing them with linear constraints defined by

hyperplanes spanned by extreme intersection points of non-convex constraints (3.12) and

the surface of a hypercube defined by linear constraints (C.1) (Boyd & Vandenberghe,

2004). We denote extreme points defined by intersections of non-convex constraints (3.12)

and linear constraints (3.11) as extreme points of non-convex regions.

This process is often referred to as set “convexification” (Li et al., 2001). However,

the convexification process for complete and partial support cases is different. While in

the partial support case, there are n − k convex constraints (3.13), there are no convex

constraints in the full support case. Thus, the set of extreme points of non-convex regions

can differ. We consider full and partial support cases separately.
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C.1 Full support

Consider set ΥC defined by the following inequality constraints:

1 ≤ vi ≤ n− 1 ∀i ∈ [1, n], (C.1)

n− 2∑
j∈N\{i}

1
vj

− vi ≤ 0 ∀i ∈ [1, n], (C.2)

To construct (ΥC), we first characterise all of the extreme points of non-convex regions

of the original set ΥC . We denote the set of extreme points of ΥC as E(ΥC). There might

be two types of extreme points:

Type 1 extreme points defined by the intersection of a single non-convex constraint

(C.2) and the surface of a hypercube (C.1);

Type 2 extreme points defined by the intersection of t ≥ 2 non-convex constraints

(C.2) and the surface of a hypercube (C.1).

Type 1 extreme points. Consider a non-convex constraint for the value of some node

x ∈ N :

vx ≥
n− 2∑
j∈N\{x}

1
vj

= Ax, (C.3)

where Ax is an expected gain from an attack on nodes indexed j ∈ N \ {x}. Non-convex

constraint intersects the surface of a hyperplane (C.1) in two cases:

Case 1a. Node x takes values vx = Ax ∈ {1, n− 1};

Case 2a. Nodes indexed j ∈ N \ {x} take extreme values vj ∈ {1, n − 1} and

vx = Ax.

Also observe that expected gain from an attack on nodes indexed j ∈ N \ {x} does

not depend on the order of values in set N \ {x}. It follows that for a given set of values

that satisfy (C.3) there are (n − 1)! ways to write coordinates of some point in which

coordinate vx has a fixed value, while all other coordinates permute. We denote the set

of all (vσ(1), · · · , vσ(n)) as σ ranges over permutations of {1, · · · , n} that fix coordinate x,

as a family of points. To simplify the notation, we represent each family of points with a

partially ordered set in which first n−1 elements vj indexed j ∈ N \{x} are ordered from

the largest to the smallest and the last element is vx—we denote this partially ordered

set as the composition of coordinates.
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Case 1a: vx = Ax ∈ {1, n− 1}. First observe that any point which has coordinate

vx = n−1 cannot be an extreme point of non-convex region. This is because the maximum

possible expected value from an attack on n− 1 nodes is maxvj A = (n−1)(n−2)
n−1

= n− 2 <

n− 1, where i ∈ N \ {x}.

Claim C.1. Any point which has coordinate vx = Ax = n− 1 is not an extreme point of

non-convex region of ΥC.

Now consider some point which has coordinate vx = 1. First observe that when

vx = 1, the nodes indexed j ∈ N \ {x} cannot all simultaneously attain extreme values

vj ∈ {1, n− 1}, i.e. Ax = 1.

Claim C.2. If vj ∈ {1, n− 1}, ∀j ∈ N \ {x}, then Ax ̸= 1.

Proof of Claim C.2. Consider some point in which q coordinates have value vq = n−1,

and n− q− 1 coordinates have value vu = 1 and vx = Ax = 1. Substituting the sequence

with this composition of coordinates in (C.3) yields:

Ax = 1 =
n− 2

q
n−1

+ n− q − 1
. (C.4)

Solving (C.4) for q yields:

q =
n− 1

n− 2
,

which is not feasible since q is the number of coordinates that attain value vq = n − 1,

q ∈ Z. ■

However, we can still find a point which has composition of coordinates, i.e. vx = 1,

vj ∈ {1, n− 1}, ∀j ∈ N \ {x, y}, and some coordinate vy ∈ [1, n− 1]. The composition of

coordinates of the family mentioned above can be written as follows:

vqb =

n− 1, · · · , n− 1︸ ︷︷ ︸
×q

, vy, 1, · · · , 1︸ ︷︷ ︸
×(n−q−2)

, 1︸︷︷︸
=Ax

 , (C.5)

where q is a number of nodes which attain value n− 1.

We now demonstrate that the only case in which vqb ∈ E(ΥC) is when q = 1.

Claim C.3. vqb ∈ E(ΥC) IFF: q = 1. In this case, vy =
n−1
n−2

.
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Proof of Claim C.3. First, consider points which have composition of coordinates v0
b

in which q = 0:

v0
b =

vy, 1, · · · , 1︸ ︷︷ ︸
×(n−2)

, 1︸︷︷︸
=Ax

 . (C.6)

Substituting (C.6) into (C.3) yields:

A0
x = 1 =

n− 2

(n− 2) + 1
vy

,

which does not have a solution for vy ∈ R+.

Now consider some points which have composition of coordinates vq≥1
b . Substituting

(C.5) in (C.3) yields:

Aq≥1
x = 1 =

n− 2
q

n−1
+ (n− 2− q) + 1

vy

. (C.7)

Solving equation (C.7) for vy yields:

vy =
n− 1

(n− 2)q
. (C.8)

Observe that the RHS of equation (C.8) is smaller than 1 for any q ≥ 2. Therefore,

any point with composition of coordinates v≥2
b lies beyond a hypercube defined by linear

constraints (C.1) and vq≥2
b ̸∈ E(ΥC).

Thus, the only possibility in which vq≥1
b ∈ E(ΥC) is when q = 1. In this case:

vy =
n− 1

n− 2
> 1.

■

It follows from Claims C.1 and C.3 that the only family of extreme points that Case

1a yields must have the following composition of coordinates:

vb =

n− 1,
n− 2

n− 1
, 1, · · · 1︸ ︷︷ ︸
×(n−3)

, 1︸︷︷︸
=Ax

 . (C.9)

As in sequence (C.9), coordinate vx attains the lowest possible value vx = 1, we denote

vb as the lower family of extreme points.

Case 2a. vj ∈ {1, n − 1}, ∀j ∈ N \ {x}. In this case, any point has the following

composition of the coordinates:

vqt =

n− 1, · · ·n− 1︸ ︷︷ ︸
q

, 1, · · · 1︸ ︷︷ ︸
n−q−1

, Ax

 , (C.10)
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where q is the number of nodes that attain value n− 1.

The value Ax given the composition (C.10) can be expressed as:

Aqx =
(n− 2)(n− 1)

(n− 1)(n− q − 1) + q
. (C.11)

First, we demonstrate that families of extreme points (C.10) with q = {0, 1} are not

extreme points of set ΥC .

Claim C.4. vqt ̸∈ E(ΥC) if q ∈ {0, 1}.

Proof of Claim C.4. Substituting composition (C.10) in which q = 0, v0
t into (C.11)

yields:

A0
x =

(n− 2)(n− 1)

(n− 1)(n− 1)
=
n− 2

n− 1
< 1.

Therefore, points of family v0
t ̸∈ E(ΥC).

Substituting composition (C.10) in which q = 1, v1
t into (C.11) yields:

A1
x =

(n− 2)(n− 1)

(n− 1)(n− 2) + 1
< 1.

Thus, points of family v1
t ̸∈ E(ΥC) as well. ■

We now demonstrate that the only family of extreme points that is included in E(ΥC)

must have the composition of coordinates (C.10) with q = n− 1.

Claim C.5. vqt ∈ E(ΥC) IFF: q = n− 1.

Proof of Claim C.5. Consider families of points vqt with q ∈ [2, n− 2]. Any of those

families has at least one node of value vu = 1. Now consider non-convex constraint (C.2)

written for some node l ∈ N \ {x} that attains value vu:

vl ≥
(n− 2)2

n2 − n(q + 3) + 2q + 3︸ ︷︷ ︸
ι

. (C.12)

Consider the first derivative of ι w.r.t. q:

∂ι

∂q
=

(n− 2)3(
n2 − n(q + 3) + 2q + 3

)2 > 0.

Therefore, it is sufficient to rule-out (C.12) when q = 2:

vl ≥
(n− 2)2

(n− 5)n+ 7
. (C.13)
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Substituting vl = 1 in (C.13) and simplifying yields:

n ≤ 3.

Therefore, constraint (C.12) is never satisfied for any n > 3. It follows that vqt ̸∈

E(ΥC), ∀q ∈ [2, n− 2].

The only case left to verify is when q = n− 1. Substituting vn−1
t into (C.11) yields:

An−1
x =

(n− 2)(n− 1)

(n− 1)(n− n+ 1− 1) + n− 1
= n− 2.

It follows that vn−1
t ∈ E(ΥC) as all nodes always satisfy all constraints. ■

Therefore the only family of extreme points which Case 2a yields must have the

following composition of coordinates:

vt =

n− 1, · · ·n− 1︸ ︷︷ ︸
×(n−1)

, n− 2︸ ︷︷ ︸
=vx

 . (C.14)

As in composition (C.14), coordinate vx = n− 2, we denote vt as the upper family of

extreme points.

Type 2 extreme points. This type of extreme points results from intersection of a

surface of a hypercube (C.1) with t ∈ [2, n] non-convex constraints (C.2).

We first characterise the function of intersection of t ≤ n non-convex constraints (C.2).

We denote the set of nodes whose constraints intersect as T ⊆ N , |T | = t. Without loss

of generality we relabel the nodes which belong to set T and write their values as a set

vz = (vz1 , · · · , vzt). Set vz is not necessarily ordered. The function of intersection must

satisfy the following system of equations:

vz1 =
n−2∑

j∈N\{z1}
1
vj

,

...

vzt =
n−2∑

j∈N\{zt}
1
vj

.

(C.15)

We now demonstrate that system (C.15) is satisfied IFF vzi =
n−1−t∑
j∈N\T

1
vj

, ∀zi ∈ T .

Claim C.6. System of equations (C.15) is satisfied IFF

vzi =
n− 1− t∑
j∈N\T

1
vj

, ∀zi ∈ T. (C.16)
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Proof of Claim C.6. We prove by induction on the number of constraints that inter-

sect, t.

Base case, t = 2. Consider the base case in which constraints for some nodes z1

and z2 intersect. The corresponding system of equations is then:

vz1 =
n−2

1
z2

+
∑

j∈N\{z1,z2}
1
vj

,

vz2 =
n−2

1
z1

+
∑

j∈N\{z1,z2}
1
vj

.

Substituting (C.1) into (C.1) yields:

vz1 =
n− 2

1
z1

+
∑

j∈N\{z1,z2}
1
vj

n−2
+
∑

j∈N\{z1,z2}
1
vj

.

Rearranging and simplifying yields:

vz1 =
n− 3∑

j∈N\{z1,z2}
1
vj

. (C.17)

Substituting (C.17) into (C.1), rearranging, and simplifying yields:

vz2 =
n− 3∑

j∈N\{z1,z2}
1
vj

. (C.18)

Thus, the system is satisfied whenever vz1 = vz2 =
n−3∑

j∈N\{z1,z2}
1
vj

and the claim holds.

Induction step. Assume that the statement holds for some 2 < w < n. Now

consider the case in which w + 1 constraints intersect:

vz1 =
n−2∑

j∈N\{z1}
1
vj

,

...

vzw+1 =
n−2∑

j∈N\{zw+1}
1
vj

.

(C.19)

As we assumed that statement holds for w it must be the case that solving first w

equations of the system (C.19) for vzi , i ∈ [1, w] yields:

vz1 = vz2 = · · · = vzw =
n− w − 1∑
j∈N\W

1
vj

, (C.20)

where W ∈ {z1, · · · , zw}.
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Substituting (C.20) into equation w + 1 of system (C.19) yields:

vzw+1 =
n− 2

1
vzw+1

+
∑

j∈N\W1
1
vj

n−1−w +
∑

j∈N\W 1
1
vj

, (C.21)

where W 1 ∈ {z1, · · · , zw+1}. Solving (C.21) for vzw+1 yields:

vzw+1 =
n− w − 2∑
j∈N\W 1

1
vj

. (C.22)

We now substitute (C.22) into (C.20):

vzi =
n− w − 1∑

j∈N\W1
1
vj

n−w−2
+
∑

j∈N\W 1
1
vj

. (C.23)

Simplifying (C.24) yields:

vzi =
n− w − 2∑
j∈N\W 1

1
vj

= vzw+1 , ∀zi ∈ W. (C.24)

Thus, vz1 = · · · = vzw+1 =
n−w−2∑
j∈N\W1

1
vj

. ■

It immediately follows from Claim C.6 that the maximum number of non-convex

constraints that can intersect must be t = n− 2, since otherwise system (C.15) does not

have solutions in Rt
+.

Claim C.7. The maximum possible number of constraints that can intersect is t = n−2.

Proof of Claim C.7. Observe that intersection function (C.16) is positive IFF:

n− 1− t ≥ 1,

which can be rearranged as:

t ≤ n− 2.

■

We can now characterise the extreme points that result from intersection of linear

constraints (C.1) and t non-convex constraints (C.2). To simplify the notation we denote

the set of nodes whose non-convex constraints are not intersected asM = N \T . Without

loss of generality we relabel nodes in set M and write the values of those nodes as a set

vx = (vx1 , · · · , vxn−t). Set vx is not necessarily ordered.
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The composition of coordinates of each extreme point that results from intersection

of t non-convex constraints and linear constraints then can be expressed as:

vi =
(
vx1 , · · · , vxn−t , vz1 , · · · , vzt

)
, (C.25)

where xi ∈M and zi ∈ T , and vzi =
n−1−t∑
j∈M

1
vj

We now consider two cases:

Case 1b. Each node indexed zi attains value vzi ∈ {n− 1, 1};

Case 2b. Each node indexed xi attains value vxi ∈ {n− 1, 1}.

Case 1b. vzi ∈ {1, n − 1}. First observe that none of nodes indexed zi ∈ T can

attain value vzi = n − 1, as the maximum expected gain from at attack is equal to

Ac = (n−1)2

n
< n− 1.

Second, if nodes zi ∈ T each attain unit values vzi = 1, it yields the extreme point

described by composition (C.9). Therefore, this case does not yield any new extreme

points.

Case 2b. vxi = {1, n − 1}. First, observe that nodes indexed xi ∈ M cannot all

simultaneously attain unit values vxi = vu = 1, as in this case vzi < 1, meaning that

points like this lie beyond the hypercube (C.1).

Claim C.8. vi ̸∈ E(ΥC) if vxi = 1, ∀xi ∈M .

Proof of Claim C.8. Substituting vxi = 1, ∀xi ∈M into (C.16) yields: vzi =
n−1−t
n−t < 1

■

Moreover, vi ∈ E(ΥC) only when all nodes indexed xi ∈ M all attain maximum

possible value vxi = n− 1.

Claim C.9. vi ∈ E(ΥC) IFF vxi = n− 1, ∀xi ∈M .

Proof of Claim C.9. First, consider the case in which some node xb ∈M attains value

vb = n− 1, while the rest nodes xj, ∀j ∈ M \ b attain a unit value, vxj = vu = 1. Then

by Proposition 2.1, the expected attack on nodes xi ∈M must be less than 1. Therefore,

these points lie beyond the hypercube defined by (C.1).
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Now consider the case in which q ≥ 2 nodes indexed xi ∈ Q where Q ⊂ M attain

value vxi = vq = n − 1 while the rest n − q − t nodes indexed xj ∈ M \ Q attain a unit

value, vxj = vu = 1. The corresponding composition of coordinates is then:

vqui =

n− 1, · · · , n− 1︸ ︷︷ ︸
×q

, 1, · · · , 1︸ ︷︷ ︸
×(n−q−t)

, vz1 , · · · , vzt

 ,

where zi ∈M , and vzi =
n−1−t∑
j∈M

1
vj

.

However, composition vqui violates the full support assumption as expected attack on

q ≥ 2 nodes of value vq = n− 1, Aq = (n−1)(q−1)
q

> 1 for any n > q ≥ 2.

Thus, vi ∈ E(ΥC) IFF all nodes indexed xi ∈M attain value vxi = vq = n− 1.

■

Therefore, coordinates of each extreme point defined by the intersection of t non-

convex constraints and a hypercube defined by linear constraints (C.1) can be written as

follows:

vqi =

n− 1, · · · , n− 1︸ ︷︷ ︸
×q

,
(n− 1)(q − 1)

q
· · · (n− 1)(q − 1)

q︸ ︷︷ ︸
×(n−q)

 . (C.26)

By Claim C.7, any set ΥC must have n−2 families of extreme points that have compo-

sition of coordinates (C.26). Each family differs in the number of coordinates q ∈ [2, n−2].

We denote the families of extreme points which have composition of coordinates (C.26)

as intermediate families of extreme points.

Observe that intermediate families of extreme points (C.26) and the upper family of

extreme points (C.14) can be described by a composition (C.26) allowing q ∈ [2, n − 1].

Thus, we add the upper family of extreme points to the intermediate extreme points.

Therefore, set ΥC has two classes of families of extreme points:

1. lower family of extreme points:

vb =

n− 1,
n− 2

n− 1
, 1, · · · 1︸ ︷︷ ︸
×(n−2)

 . (C.27)
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2. intermediate families of extreme points:

vq
i =

n− 1, · · · , n− 1︸ ︷︷ ︸
×q

,
(n− 1)(q − 1)

q
· · · (n− 1)(q − 1)

q︸ ︷︷ ︸
×(n−q)

 , (C.28)

where q ∈ [2, n− 1].

C.2 Convex hull construction for the full support case

In order to construct (Υ), it is sufficient to find a series of hyperplanes which span

through all extreme points of non-convex regions and derive the corresponding con-

straints.

We first derive the form of the equation of a hyperplane that spans through all of

extreme points of some family.

Claim C.10. An equation of a hyperplane that spans through all of the extreme points

of some family can be expressed as:∑
j∈N\{x}

vj + Cvx +D = 0,

where C and D are constants.

Proof of Claim C.10. Every extreme point from the same family has one fixed coor-

dinate vx, while all other coordinates vi ∈ N \ {x} permute. Let P = N \ {x}. Without

loss of generality we relabel all coordinates vi ∈ P , i.e. i ∈ {p1, · · · , pn−1}. Then let

SP denote the set of all permutations of elements of P , i.e. each element σj ∈ SP ,

σj =
(
σj(v1), · · · , σj(vn−1)

)
, where j ∈ [1, (n− 1)!].

If there exists a hyperplane which spans through all of the points of some family then

the following system of equations must be satisfied for any y ∈ [1, n−1] and−y ∈ [1, n−1]:∑n−1
i=1 aiσy(vpi) + axvx + a0 = 0,∑n−1

i=1 aiσ−y(vpi) + axvx + a0 = 0.

Now assume that a1 = a2 = · · · = an−1 = a. Then, subtracting equation (C.2) from

equation (C.2) and rearranging yields:

a
n−1∑
i=1

σy(vpi) + axvx + a0 = a

n−1∑
i=1

σ−y(vpi) + axvx + a0. (C.29)
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By simplifying (C.29) we obtain:

n−1∑
i=1

σy(vi) =
n−1∑
i=1

σ−y(vi), (C.30)

which always holds as the sum of elements of any permutation is always constant.

Therefore, the equation of a hyperplane that spans through points of one family can

be expressed as follows:

a
∑

j∈N\{x}

vj + axvx + a0 = 0. (C.31)

Dividing both sides of (C.31) by a yields:∑
j∈N\{x}

vj +
ax
a
vx +

a0
a

= 0, (C.32)

or ∑
j∈N\{x}

vj + Cvx +D = 0, (C.33)

where C = ax
a
and D = a0

a
. ■

We now demonstrate that extreme points of all intermediate families (C.28) lie on the

same hyperplane.

Claim C.11. There exists a hyperplane that spans through all extreme points of inter-

mediate families. The corresponding hyperplane equation is:∑
j∈N\{x}

vj − (n− 1)vx − (n− 1) = 0. (C.34)

Proof of Claim C.11. Assume that there exists a hyperplane that spans through

extreme points of two intermediate families with exactly q and q+1 coordinates attaining

value vq = n−1. Then the coefficients of corresponding hyperplane equation must satisfy

the following system of equations:


q(n− 1) + (n− q − 1) (n−1)(q−1)

q
+ (n−1)(q−1)

q
C +D = 0,

(q + 1)(n− 1) + (n− q − 2) (n−1)q
q+1

+ (n−1)q
q+1

C +D = 0.

(C.35)

Solving system (C.35) for C and D yields:

C = −n
2 − 2n+ 1

n− 1
= −(n− 1), D = −(n− 1).
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Since neither C nor D depend on q, it is possible to build a hyperplane that spans

through extreme points of all intermediate families simultaneously. The corresponding

hyperplane equation is then:∑
j∈N\{x}

vj − (n− 1)vx − (n− 1) = 0.

■

However, extreme points of the lower family do not lie on the hyperplane (C.34). Thus,

to cover all of the non-convex regions it is required to span one additional hyperplane.

In the next claim we find a hyperplane which spans through lower family of nodes and

the closest family of intermediate nodes19.

Claim C.12. The hyperplane which spans through extreme points of the lower family

and the closest intermediate family of extreme points (with q = 2) can be described by the

following hyperplane equation:∑
j∈N\{i}

vj −
n2 − 3n+ 4

n− 2
vi −

(n− 3)(n− 1)

n− 2
= 0. (C.36)

Proof of Claim C.12. To derive a corresponding hyperplane the following system of

equations must be solved:
2(n− 1) + (n− 3) (n−1)

2
+ (n−1)

2
C +D = 0,

(n− 1) + n−1
n−2

+ (n− 3) + C +D = 0.

(C.37)

Solving system (C.37) for C and D yields:

C = −n
2 − 3n+ 4

n− 1
D = −(n− 3)(n− 1)

n− 2
.

The corresponding hyperplane equation is then:∑
j∈N\{i}

vj −
n2 − 3n+ 4

n− 2
vi −

(n− 3)(n− 1)

n− 2
= 0. (C.38)

■
19The difference between coordinates of a ‘lower’ family extreme points and ‘intermediate’ extreme

points is minimal when q = 2.
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Therefore, in order to obtain (ΥC), each non-convex constraint for some node x ∈ [1, n]

must be replaced with two linear constraints of the form:
∑

j∈N\x vj − (n− 1)vx − (n− 1) ≤ 0,∑
j∈N\x vj −

n2−3n+4
n−1

vx − (n−3)(n−1)
n−2

≤ 0.

(C.39)

Thus, (ΥC) is defined by the following set of constraints:

1 ≤ vi ≤ n− 1 ∀i ∈ [1, n], (C.40)∑
j∈N\{i}

vj − (n− 1)vi − (n− 1) ≤ 0 ∀i ∈ [1, n], (C.41)

∑
j∈N\{i}

vj −
n2 − 3n+ 4

n− 2
vi −

(n− 3)(n− 1)

n− 2
≤ 0 ∀i ∈ [1, n]. (C.42)

We demonstrate the construction of a convex hull for the full support case with the

example in which n = 4.

Example, n = 4. Consider the original set Υ4 for the full support maximisation prob-

lem with n = 4:

1 ≤ vi ≤ 3 ∀i ∈ [1, 4],

2∑
j∈N\{i}

1
vj

− vi ≤ 0 ∀i ∈ [1, 4].

Then, (Υ4) is defined by the following constraints:

1 ≤ vi ≤ 3 ∀i ∈ [1, 4],∑
j∈N\{i}

vj − 3vi − 3 ≤ 0 ∀i ∈ [1, 4],

∑
j∈N\{i}

vj − 4vi −
3

2
≤ 0 ∀i ∈ [1, 4].

Figure 4 in the main text illustrates the set of feasible values for vi, where i ∈ [1, 3]

along the edge v4.

C.3 Partial support

In this subsection we characterise the set of all extreme points of non-convex regions

for the partial support case.
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Let ΥP be the set of feasible values for nodes i ∈ N for the partial support case. Set

ΥP is defined by the following constraints:

1 ≤ vi ≤ n− 1 ∀i ∈ [1, k], (C.43)

k − 2∑
j∈K\{i}

1
vj

− vi ≤ 0 ∀i ∈ [1, k], (C.44)

− (k − 1)∑k
i=1

1
vi

− vj ≤ 0 ∀j ∈ (k, n]. (C.45)

This set of constraints can be significantly simplified. First, by Lemma 3.1 constraints

(C.45) can be written with equality sign:

− (k − 1)∑k
i=1

1
vi

= vj ∀j ∈ (k, n].

Thus, every node outside set K attains a value that equals exactly the expected gain

from an attack on nodes in set K.

We can now reduce the problem’s dimensionality by ensuring that the gain from an

attack on top k nodes is always larger than 1 (since any node outside the Attacker’s

support cannot attain a value smaller than 1). Moreover, nodes inside the Attacker’s

support cannot attain a value of 1 as well, as, in this case, all the nodes must then included

in the Attacker’s support violating the partial support assumption. To guarantee that all

the nodes inside the Attacker’s support are larger than 1 and all the nodes outside the

Attacker’s support are not smaller than 1, the lower boundary of constraint (C.43) must

be increased. Since the expected attack on top k nodes attains the smallest value when

all of the nodes attain the minimum possible value vmin, in order to find a new lower

boundary for (C.43), it is sufficient to solve the following equation:

k − 1
k

vmin

= 1. (C.46)

Solving equation (C.46) for vmin yields:

vmin =
k

k − 1
.

Therefore, if k
k−1

≥ vi, ∀i ∈ K, all of the constraints for nodes vj, j ∈ N \ K are
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always satisfied. The constraints that define set ΥP then can be restated as follows:

k

k − 1
≤ vi ≤ n− 1 ∀i ∈ [1, k], (C.47)

k − 2∑
j∈K\{i}

1
vj

− vi ≤ 0 ∀i ∈ [1, k], (C.48)

− (k − 1)∑k
i=1

1
vi

= vj ∀j ∈ (k, n]. (C.49)

It follows that similarly to the full support case, all non-convex regions of set ΥP

have extreme points defined by the intersection of one or several non-convex constraints

(C.48) and the surface of hypercube defined by (C.47). We denote the set of extreme

points of ΥP as E(ΥP ). The set of nodes which pass the Attacker’s support conditions

with equality is denoted as Θ, Θ = N \K.

Before approaching the search of extreme points for the general partial support case,

we first consider a special case in which k = 2.

Special case, k=2. Consider non-convex constraint (C.48) for nodes i ∈ K = {1, 2}:

vi ≥
1

1
vi
+ 1

v−i

.

Rearranging and simplifying yields:

vi ≤ vi + v−i,

which is always satisfied.

Therefore, if k = 2, non-convex constraints do not influence the set of feasible values

ΥP
k=2 and this set is always convex. It follows that all extreme points in this case are

defined by linear constraints (C.47). In the next claim we derive the general form of all

extreme points for the special case k = 2.

Claim C.13. If k = 2, the set of feasible values for i ∈ K = {1, 2} has three families of

extreme points:

w1
k=2 =

2, 2, 1, · · · , 1︸ ︷︷ ︸
×θ

 , (C.50)

w2
k=2 =

n− 1, n− 1,
n− 1

2
, · · · , n− 1

2︸ ︷︷ ︸
×θ

 , (C.51)
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w3
k=2 =

n− 1, 2,
2(n− 1)

n+ 1
, · · · , 2(n− 1)

n+ 1︸ ︷︷ ︸
×θ

 . (C.52)

where θ = |Θ|.

Proof of Claim C.13. First, observe that if k = 2, the minimum value that any node

i ∈ K can attain is vmin = k
k−1

= 2
2−1

= 2.

We now consider three possibilities in which vi ∈ {2, n− 1}

1. vi = v−i = 2, i ∈ {1, 2}. Substituting k = 2, vi = v−i = 2 into (C.49) yields:

vj =
1

1
2
+ 1

2

= 2 ∀j ∈ Θ.

Therefore, this case yields the extreme point with composition of coordinates (C.50).

2. vi = v−i = n − 1, i ∈ {1, 2}. Substituting k = 2, vi = v−i = n − 1 into (C.49)

yields:

vj =
n− 1

2
∀j ∈ Θ.

Therefore, this case yields the extreme point with composition of coordinates (C.51).

3. vi = n − 1, v−i = 2, i ∈ {1, 2}. Substituting k = 2, vi = n − 1 and v−i = n − 1

into (C.49) yields:

vj =
2(n− 1)

n+ 1
∀j ∈ Θ.

Therefore, this case yields the extreme point with composition of coordinates (C.52). ■

From this point we focus on a more general case in which k ≥ 3. As in the full

support case, we distinguish two types of extreme points of non-convex regions: Type

1 extreme points which result from intersection of a single non-convex constraint and

linear constraints; and Type 2 extreme points which result from intersection of several

non-convex constraints and linear constraints.

Type 1 extreme points. We demonstrate that similarly to full support case, there

are two families of Type 1 extreme points that belong to set E(ΥP ): lower family and

upper family.
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First, consider a non convex constraint (C.48) for the value of some node x ∈ K:

vx ≥
k − 2∑
j∈K\{x}

1
vj

= Ax. (C.53)

There are two cases to consider:

Case 1c. Intersections in which node x takes extreme values vx ∈ { k
k−1

, n− 1},

Case 2c. Intersection in which nodes indexed i ∈ K \x take values vi ∈ {1, n−1}.

Case 1c. vx = Ax ∈ {1, n − 1}. We have already demonstrated in Claim C.1 that

coordinate vx cannot attain value n− 1 in any extreme point of a non-convex region.

We now search for an extreme point in which coordinate vx = Ax = k
k−1

, some

coordinate vy ∈ [ k
k−1

, n − 1] and the rest coordinates vi ∈ { k
k−1

, n − 1}, ∀i ∈ K \ {x, y}.

The corresponding composition of coordinates can be written in the following form:

wq
b =

n− 1︸ ︷︷ ︸
×q

,
k

k − 1︸ ︷︷ ︸
×k−q−2

, vy,
k

k − 1︸ ︷︷ ︸
=Ax

, Ak︸︷︷︸
×θ

 , (C.54)

where q is a number of nodes that attain value vq = n− 1, Ak is an expected attack on

top k nodes, and θ = |Θ|. Also note that in any sequence (C.54) it must be the case that

q ∈ [1, k − 2].

We now demonstrate that the only case in which wq
b ∈ E(ΥP ) is when q = 1 and

vy =
k(n−1)

kn−2k−n+1
.

Claim C.14. wq
b ∈ E(ΥP ) IFF q = 1 and vy =

k(n−1)
kn−2k−n+1

Proof of Claim C.14. First, we demonstrate that if q = 0, w0
b ̸∈ E(ΥP ). Substituting

sequence (C.54) with q = 0 into (C.53) yields:

Ax =
k

k − 1
=

k − 2
k−2
k

k−1

+ 1
vy

. (C.55)

By rearranging and simplifying equation (C.55) we obtain:

k

(k − 1)
(
k2vy − 3kvy + k + 2vy

) = 0,

which does not have a solution for vy ∈ R.
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Now consider the case in which q ≥ 1. Substituting composition (C.54) in (C.53):

Ax =
k

k − 1
=

k − 2
q

n−1
+ k−q−2

k
k−1

+ 1
vy

. (C.56)

Solving (C.56) for vy yields:

vy =
k(n− 1)

q(kn− 2k − n+ 1)
. (C.57)

We now demonstrate that in (C.57) vy <
k
k−1

for any q ≥ 2.

Consider the first derivative of the RHS of equation (C.57) w.r.t. q:

∂

∂q

k(n− 1)

q(kn− 2k − n+ 1)
= − k(n− 1)

q2(kn− 2k − n+ 1)
< 0,

which is always negative as n(k − 1) > 2k. Therefore, it is sufficient to consider (C.57)

when q = 2. Substituting q = 2 in (C.57) yields:

vy =
k(n− 1)

2k(n− 2)− 2n+ 2
. (C.58)

We now show that:
k(n− 1)

2k(n− 2)− 2n+ 2
<

k

k − 2
. (C.59)

Rearranging and simplifying (C.59) yields:

(k − 1)k(k(n− 3)− n+ 1)(k(n− 2)− n+ 1) > 0,

or:

(n(k − 1)− 3k + 1)︸ ︷︷ ︸
ι1

(n(k − 1)− 2k + 1) > 0.

Observe that ∂ι
∂k

= n− 3 > 0 for any n > 3. Thus, consider ι when k = 4 (the minimum

value that k can attain in this composition is 4, as the composition has two nodes of

value vq, one node of value vq and one node of value k
k−1

):

ι = 3n− 12 + 1 > 0,

which is always positive since n > k = 4.

It follows that inequality (C.59) is always satisfied and the intersection happens be-

yond the hypercube defined by linear constraints (C.47) for any q ≥ 2. Thus, any family

of points with composition wq≥2
b ̸∈ E(ΥP ).
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The only possibility that is left to verify is when q = 1. Substituting sequence (C.54)

with q = 1 into (C.57) yields:

vy =
k(n− 1)

kn− 2k − n+ 1
. (C.60)

We now demonstrate that:

k(n− 1)

kn− 2k − n+ 1
>

k

k − 1
. (C.61)

Rearranging and simplifying (C.61) yields:

(k − 1)k2(k(n− 2)− n+ 1) > 0,

or

k(n− 2)− n+ 1 > 0,

which is always satisfied for any n > k ≥ 3. ■

Therefore, Case 1c yields only one family of extreme points with the following com-

position of coordinates:

wq
b =

n− 1,
k(n− 1)

kn− 2k − n+ 1
,

k

k − 1
, · · · , k

k − 1︸ ︷︷ ︸
×n−2

 . (C.62)

We denote the family of extreme points with composition (C.62) as the the lower family

of extreme points of the partial support case.

Case 2c. vi ∈ { k
k−1

, n− 1}, ∀i ∈ K \ {x}. The general composition of coordinates

for this case can be written as:

wq
u =

n− 1, · · · , n− 1︸ ︷︷ ︸
×q

,
k

k − 1
, · · · , k

k − 1︸ ︷︷ ︸
×k−q−2

, Ax, A
k, · · · , Ak︸ ︷︷ ︸

θ

 , (C.63)

We demonstrate that Case 2c yields only one extreme point family with composition

of coordinates wq
u in which q = k − 1.

Claim C.15. wq
u ∈ E(ΥP ) IFF q = k − 1.
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Proof of Claim C.15. We first demonstrate that wq
u ̸∈ E(ΥP ) if q ∈ {0, 1}.

Substituting composition (C.63) with q = 0 in (C.53) yields:

Ax =
k − 2
(k−1)2

k

=
(k − 2)k

(k − 1)2
= 1− 1

(k − 1)2
<

k

k − 1
.

It follows that this intersection happens beyond the hypercube defined by (C.47) and

w0
u ̸∈ E(Υ).

Now consider the case in which q = 1. Substituting composition (C.63) with q = 1 in

(C.53) yields:

Ax =
k − 2

(k−2)(k−1)
k

+ 1
n−1

.

We now demonstrate that:
k − 2

(k−2)(k−1)
k

+ 1
n−1

<
k

k − 1
. (C.64)

Rearranging and simplifying (C.65) yields:

(k − 1)k2
(
k2(n− 1) + k(4− 3n) + 2(n− 1)

)
> 0,

or:

k2(n− 1) + k(4− 3n) + 2(n− 1)︸ ︷︷ ︸
τ

> 0. (C.65)

Consider the first derivative of τ w.r.t to k:

∂τ

∂k
= 4− 2k − 3n+ 2kn > 0,

which is always positive since 2n(k−3) ≥ 2k for any k ≥ 3. Thus, it is sufficient to verify

inequality (C.65) at k = 3. Substituting k = 3 into (C.65) yields:

2n+ 1 > 0,

which always holds.

It follows that w1
u ̸∈ E(ΥP ).

Now we demonstrate that any family with composition (C.63) with q ∈ [2, k− 2] and

k ≥ 4 cannot belong to E(ΥP ). To see that, consider the gain from an expected attack

on q ≥ 2 nodes:

Aq =
(n− 1)(q − 1)

q
.

Since ∂Aq

∂q
= n−1

q2
, it follows that the minimum value of Aq is achieved whenever q = 2:

A2 =
n− 1

2
.
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Now observe that:
n− 1

2
>

k

k − 1
,

for any n > k ≥ 4.

It follows that in any composition (C.63) with q ∈ [2, k−2] nodes of value vq = n−1,

and k−q−1 nodes of value vk = k
k−1

with n > k ≥ 4, any node of value vk is not included

in the Attacker support. Thus, extreme points of this composition do not belong to ΥP .

The only possibility left to verify is when q = k − 1. In this case, there is no nodes

of value vk and every node of value n − 1 must be included in the Attacker’s support.

Substituting composition (C.63) in (C.53) with q = n− 1 yields:

Ax =
(n− 1)(q − 1)

q
>

k

k − 1
.

■

It immediately follows from Claim (C.15) that the only family of extreme points that

Case 2c yields is:

wu =

n− 1, · · · , n− 1︸ ︷︷ ︸
×k−1

,
(n− 1)(q − 1)

q
, · · · , (n− 1)(q − 1)

q︸ ︷︷ ︸
×n+1−k

 . (C.66)

We denote the family which have composition of coordinates (C.66) as the upper family

of extreme points of the partial support case.

Type 2 extreme points. This type of extreme points results from the intersection of

a surface of a hypercube defined by (C.47) and t ≥ 2 non-convex constraints (C.48).

Utilising the results of Claim (C.6) we can write down the general form of intersection

of t constraints straight away. Let T denote the set of nodes whose constraints intersect

and M = K \ T denote the set of nodes whose constraints do not intersect. Without

loss of generality we relabel nodes in set T as vz = (vz1 , · · · , vzt) and nodes in set M as

vz = (vx1 , · · · , vzk−t
). Then any Type 2 extreme point family can be written as:

wi =

vx1 , · · · , vxk−t
, vz1 , · · · , vzt , Ak︸︷︷︸

×θ

 , (C.67)

where vzi =
k−1−t∑
j∈M 1

vj

.

As previously, there are two cases to consider:
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Case 1d. Each node indexed i ∈ T attains value vi ∈
{

k
k−1

, n− 1
}
;

Case 2d. Each node indexed j ∈M attains value vj ∈
{

k
k−1

, n− 1
}
.

Case 1d. vi ∈
{

k
k−1

, n− 1
}
, ∀i ∈ T . First, note that similarly to the full support

case, none of nodes indexed i ∈ T can attain value vzi = vq = n− 1, since the maximum

gain from an attack is (n−1)2

n
< n− 1.

Second, if nodes vi =
k
k−1

, ∀i ∈ T attain value vi = vk = k
k−1

, then it yields intersection

point which has composition (C.62).Therefore, this case does not yield any new extreme

points.

Case 2d. vj ∈
{

k
k−1

, n− 1
}
, ∀j ∈ M . We demonstrate that wi ∈ E(ΥP ) only if

all nodes indexed j ∈M take value vj = vq = n− 1.

Claim C.16. wi ∈ E(ΥP ) IFF vj = vq = n− 1, ∀j ∈M .

Proof of Claim C.16. First, consider the case in which all the nodes j ∈M take value

vj = vk = k
k−1

. In this case any node indexed i ∈M must attain value:

vzi =
k − 1− t

k−t
k

k−1

=
k(k − t− 1)

(k − 1)(k − t)
.

Now observe that:
k − 1− t

k−t
k

k−1

=
k(k − t− 1)

(k − 1)(k − t)
<

k

k − 1
. (C.68)

Simplifying (C.68) yields:
k − t− 1

k − t
< 1,

which is always satisfied for any t ≥ 2.

Second, consider the case in which q = 1. In this case, any node indexed i ∈M must

attain value:

vzi =
k − t− 1

(k−1)(k−t−1)
k

+ 1
n−1

.

Similarly observe that:
k − t− 1

(k−1)(k−t−1)
k

+ 1
n−1

<
k

k − 1
,

which can be rearranged and simplified as

k2(n− 1) + k(−n(t+ 2) + t+ 3) + (n− 1)(t+ 1)︸ ︷︷ ︸
ψ

> 0. (C.69)
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Consider the first derivative of ψ w.r.t to t:

∂ψ

∂t
= k − 1− (k − 1)n < 0,

which is always negative.

Now consider condition (C.69) when t attains its maximum value t = k − 2:

(k − 1)n+ 1 > 0,

which is always satisfied.

Therefore, the case in which q = 1 does not yield any extreme points.

Third, consider the case in which q ∈ [2, k− t) and k > q. In this case, any node that

attains value vk = k
k−1

cannot be included in the Attacker’s support as (n−1)(q−1)
q

> k
k−1

for any k ≥ 4.

Therefore, the only feasible extreme point has the composition of coordinates in which

vj = vq = n − 1, ∀j ∈ M since, in this case, all the nodes i ∈ M are included in the

Attacker’s support and:

vzi =
(n− 1)(q − 1)

q
>

k

k − 1
,

for any k ≥ 4. ■

It follows from Claim C.16 that the only family of extreme points that Case 2d yields

must have the following composition of coordinates:

wq
i =

n− 1, · · · , n− 1︸ ︷︷ ︸
×q

,
(n− 1)(q − 1)

q
, · · · , (n− 1)(q − 1)

q︸ ︷︷ ︸
×(n−q)

 , (C.70)

where q ∈ [2, k − 2].

We denote extreme points which have composition of coordinates (C.70) as the in-

termediate family of extreme points of the partial support case. Also observe that by

allowing q ∈ [2, k − 1] and k ∈ [2, n − 1], the composition (C.70) also covers the upper

family of extreme points of the partial support case (C.66) and the family (C.51). We

combine those three types of families.

Therefore set ΥP with k ≥ 3 has two families of extreme points:
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1. lower family of extreme points of the partial support case:

wq
b =

n− 1,
k(n− 1)

kn− 2k − n+ 1
,

k

k − 1
, · · · , k

k − 1︸ ︷︷ ︸
×(n−2)

 . (C.71)

2. intermediate family of extreme points of the partial support case:

wq
i =

n− 1, · · · , n− 1︸ ︷︷ ︸
×q

,
(n− 1)(q − 1)

q
, · · · , (n− 1)(q − 1)

q︸ ︷︷ ︸
×(n−q)

 , (C.72)

where q ∈ [2, k − 1].

Note that any point of family (C.72) can be characterised by the composition (C.28)

found in the full support case.

C.4 Convex hull construction for the partial support case

As in the full support case, in order to construct a convex hull of ΥP , it is sufficient

to build a series of hyperplanes spanned by all the extreme points of non-convex

regions and derive the corresponding constraints.

From Claim C.11 we know that hyperplane that spans through all extreme points

of some family can be expressed in the following form:∑
j∈K\x

vj + Cvx +D = 0,

where C and D are coefficients.

We now demonstrate that all the extreme points of the intermediate families of

extreme points lie on the same hyperplane.

Claim C.17. There exists a hyperplane that spans through all extreme points of all

intermediate families. The corresponding hyperplane equation is:∑
j∈K\x

vj − (k − 1)vx − (n− 1) = 0.
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Proof of Claim C.17. Assume that there exists a hyperplane which spans

through extreme points of two intermediate families which have exactly q and q+1

nodes of value vq = n − 1 correspondingly. Then the corresponding hyperplane

equation must satisfy the following system of equations:


q(n− 1) + (k − q − 1) (n−1)(q−1)

q
+ (n−1)(q−1)

q
C +D = 0,

(q + 1)(n− 1) + (k − q − 2) (n−1)q
q+1

+ (n−1)q
q+1

C +D = 0.

(C.73)

Solving system (C.73) for C and D yields:

C = −(k − 1), D = −(n− 1).

Since neither C nor D depend on q, it is possible to build a hyperplane that spans

through extreme points of all intermediate families simultaneously. The correspond-

ing hyperplane equation is then:∑
j∈N\x

vj − (k − 1)vx − (n− 1) = 0.

■

We now characterise a hyperplane which spans through nodes of the lower family

of extreme points and the closest to that family extreme points of the intermediate

family (which have the composition of coordinates w2
i ).

Claim C.18. The hyperplane which spans through extreme points of the lower fam-

ily and the closest intermediate family of extreme points (w2
i ) can be described by

the following hyperplane equation:∑
j∈K\i

vj−
k2(n− 2) + k(5− 2n) + n− 1

k(n− 2)− n+ 1
vi−

(n− 1)(kn− 3k − n+ 1)

kn− 2k − n+ 1
= 0. (C.74)

Proof of Claim C.18. To derive a corresponding hyperplane the following system

of equations must be solved:
2(n− 1) + (k − 3) (n−1)

2
+ (n−1)

2
C +D = 0,

(n− 1) + k(n−1)
kn−2k−n+1

+ (k − 3) k
k−1

+ k
k−1

C +D = 0.

(C.75)
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Solving system (C.75) for C and D yields:

C = −k
2(n− 2) + k(5− 2n) + n− 1

k(n− 2)− n+ 1
, D = −(n− 1)(kn− 3k − n+ 1)

kn− 2k − n+ 1
.

The corresponding hyperplane equation is then:∑
j∈K\i

vj−
k2(n− 2) + k(5− 2n) + n− 1

k(n− 2)− n+ 1
vi−

(n− 1)(kn− 3k − n+ 1)

kn− 2k − n+ 1
= 0. (C.76)

■

Therefore, in order to obtain (ΥP ) each non-convex constraint x ∈ [1, k] must be

replaces with two linear constraints of the form:
∑

j∈K\{x} vj − (k − 1)vx − (n− 1) ≤ 0,∑
j∈K\{x} vj −

k2(n−2)+k(5−2n)+n−1
k(n−2)−n+1

vx − (n−1)(kn−3k−n+1)
kn−2k−n+1

≤ 0.

Thus, (ΥP ) is defined by the following set of constraints:

k

k − 1
≤ vi ≤ n− 1 ∀i ∈ [1, k],∑

j∈K\{i}

vj − (k − 1)vi − (n− 1) ≤ 0 ∀i ∈ [1, k],

∑
j∈K\{i}

vj + Cvi +D ≤ 0 ∀i ∈ [1, k],

− (k − 1)∑k
i=1

1
vi

= vj ∀j ∈ (k, n],

where C = −k2(n−2)+k(5−2n)+n−1
k(n−2)−n+1

and D = − (n−1)(kn−3k−n+1)
kn−2k−n+1

.

C.5 Extreme points of convex regions

Apart from extreme points of non-convex regions, sets ΥC and ΥP have extreme

points defined solely by linear constraints (C.1) and (C.47). In this subsection, we

characterise these points. Full and partial support cases are considered separately.

Full support Any extreme points of a hypercube defined by linear constraints

(C.1) can have coordinates of value either vq = n − 1 or vu = 1. Any family of

those points must have the following composition:

88



vqf =

n− 1, · · · , n− 1︸ ︷︷ ︸
q

, 1, · · · , 1︸ ︷︷ ︸
n−q

 , (C.77)

where q ∈ [0, n].

We now demonstrate that only families in which q = 0 (sequence of unit values),

q = 1 (star network sequence), and q = n (complete network sequence) are included

in E(ΥC).

Claim C.19. vqf ∈ E(ΥC) IFF q ∈ {0, 1, n}.

Proof of Claim C.19. First consider composition (C.77) with q = 0. Each

coordinate in this composition takes value vu = 1. Since all the coordinates in this

sequence attain the same value, then by Claim (2.4) they must all be included in

the Attacker’s support. It follows that v0
f ∈ E(ΥC).

By the same argument, it must be the case that any family with a composition of

coordinates (C.77) with q = n must be included in the set of extreme points too,

v0
f ∈ E(ΥC).

We now analyse families of nodes with composition (C.77) in which q ≥ 1. We

consider two cases:

Case 1. q = 1. This composition yields a star network degree sequence, which

must be always included in E(ΥC).

Case 2. q ≥ 2. In this case, sequence (C.77) must have q coordinates of value

vq = n − 1 and n − q coordinates of unit value vu = 1. However, any node which

attains a unit value is not included in the Attacker’s support if q ≥ 2. To see that

observe that the expected gain from an attack on q nodes of values n− 1 is:

Aq =
(n− 1)(q − 1)

q
> 1,

which is larger than 1 for any n > q ≥ 2.

It follows that vq≥2
f ̸∈ E(ΥC). ■
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Therefore, three extreme point families are defined purely by linear constraints

in the full support case: a star network, a complete network, and a sequence of

unit values. However, we are not considering the latter as an eligible solution for

the maximisation problem. Sequence v0
f appears as a maximiser for the relaxed

maximisation problem at extreme values of c → 2, outperforming a star network.

However, the sequence is clearly not-graphic as the minimum possible number of

connections that a connected network can have is (n − 1), and this sequence has

only 1
2
n. Moreover, by Lemma 3.1 we know that a star network must always be an

optimal choice for the Defender for the sufficiently high cost of an edge, c > cu.

Partial support Similarly, we now determine extreme points of a hypercube

defined by linear constraints (C.47). As case with k = 2 was already considered

in Subsection C.3, we consider a case in which k ≥ 3. Any family of extreme

points defined by linear constraints (C.47) have coordinates either of value vq =

n− 1 or vk = k
k−1

. Thus, they can be represented by the following composition of

coordinates:

wq
p =

n− 1, · · · , n− 1︸ ︷︷ ︸
q

,
k

k − 1
, · · · , k

k − 1︸ ︷︷ ︸
k−q

, Aqp︸︷︷︸
×n−k

 , (C.78)

where q ≥ 2, and

Aqp =
k − 1

(k−1)(k−q)
k

+ q
n−1

.

We now demonstrate that wq
p ∈ E(ΥP ) IFF q ∈ {0, 1, k}.

Claim C.20. wq
f ∈ E(ΥP ) IFF q ∈ {0, 1, k}.

Proof of Claim C.20. First, consider the case in which q = 0. The composition

of coordinates then has k coordinates which attain value vk = k
k−1

and n − k

coordinates of value vu = 1. Since every of the top k nodes in the composition

attains the same value, then by Claim 2.4 they must be included in the Attacker’s

support. It follows that wq
0 ∈ E(ΥC).

By the same argument, the composition in which q = k is included in the set of

extreme values of the set ΥC , wk
0 ∈ E(ΥC).
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Now consider sequence (C.20) in which q ≥ 1.

Case 1. q = 1 . In this case, the composition has one coordinate of value

vq = n− 1, k − 1 coordinates of value vk = k
k−1

and n− k coordinates that attain

the value equal to the expected gain from an attack on the top k nodes. Now

consider constraint (C.44) for some node y of value vk.

vy ≥
k − 2

(k−2)(k−1)
k

+ 1
n−1

. (C.79)

Substituting vy =
k
k−1

into (C.79):

k

k − 1
≥ k − 2

(k−2)(k−1)
k

+ 1
n−1

. (C.80)

Rearranging and simplifying (C.80) yields:

(k − 1)k2
(
k2(n− 1) + k(4− 3n) + 2(n− 1)

)
≥ 0,

Which is satisfied whenever:

k2(n− 1) + k(4− 3n) + 2(n− 1)︸ ︷︷ ︸
ι

≥ 0. (C.81)

Consider the first derivative of ι w.r.t. n:

∂ι

∂n
= k2 − 3k + 2 > 0,

which is larger than zero for any n ≥ 3.

Thus, we verify inequality (C.81) when n = 4 (since it is the minimum possible

number of nodes that network can have if n > k ≥ 3):

3k2 − 8k + 6 > 0,

which is always satisfied.

It follows that w1
f ∈ E(ΥP ).

Case 2. q ≥ 2. We demonstrate that any node which attains value vk is not

included in the Attacker’s support in this case. To see that observe that an expected

gain from an attack on q nodes of value vq is always larger than vk:

(n− 1)(q − 1)

q
>

k

k − 1
,
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which is always satisfied for any k > q ≥ 2 as the minimum value that the LHS of

inequality can attain is 2 (when n = 4 and q = 2), and the RHS of inequality is

strictly smaller than 2 for any k ≥ 3. Thus, wq≥2
f ̸∈ E(ΥP ). ■

To conclude, partial support case yields three families of extreme points defined

purely by linear constraints (C.47):

(a) k-family:

w0
p =

 k

k − 1
, · · · , k

k − 1︸ ︷︷ ︸
×k

, 1, · · · , 1︸ ︷︷ ︸
×(n−k)

 ,

where k ∈ [2, n − 1]. Note that when, k = 2 it yields family (C.50) found in

the convex case of partial support extreme points analysis;

(b) Quasi-star family:n− 1,
k

k − 1
, · · · , k

k − 1︸ ︷︷ ︸
×(k−1)

,
k − 1

(k−1)2

k
+ 1

n−1

, · · · , k − 1
(k−1)2

k
+ 1

n−1︸ ︷︷ ︸
×(n−k)

 ,

where k ∈ [2, n − 1]. Note that when k = 2, it yields family (C.52) found in

the convex case of partial support extreme points analysis;

(c) Intermediate family:

wk
p =

n− 1, · · · , n− 1︸ ︷︷ ︸
×k

,
(n− 1)(k − 1)

k
, · · · , (n− 1)(k − 1)

k︸ ︷︷ ︸
×(n−k)

,


which is equivalent to to intermediate families of extreme points (C.28) and

(C.72) that were discovered in both full and partial support cases.

D Feasibility of intermediate family sequences

In order for an intermediate family sequence to yield a maxi-core network, three

conditions must be satisfied:

(a) vb = (n−1)(q−1)
q

must be integer, vb ∈ Z;
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(b) the sequence must pass Erdos-Gallai graphicality conditions (3.5);

(c) the sum of all degrees in the sequence must be even.

We now consider each of those conditions separately.

Integrality of the sequence The value of peripheral nodes indexed j > q can

be restated as follows:

vb =
(n− 1)(q − 1)

q
= n− 1− n− 1

q︸ ︷︷ ︸
τ

.

Thus, peripheral nodes’ value is integer IFF τ ∈ Z.

Claim D.1. Peripheral nodes’ value vb ∈ Z IFF n−1
q

∈ Z.

Sequence graphicality We now demonstrate that any sequence of an interme-

diate family with q ∈ [2, n− 2] always satisfies graphicality constraints.

Claim D.2. Erdos-Gallai graphicality constraints (3.5) are always satisfied for any

sequence of intermediate family (3.18) with q ∈ [2, n− 2].

Proof of Claim D.2. As intermediate sequence (3.18) has only two types of

nodes, it is sufficient to check Erdos-Gallai graphicality conditions for nodes indexed

q and n (Tripathi & Vijay, 2003).

First, observe that:

q <
(n− 1)(q − 1)

q
,

if n > q2+q−1
q−1

= q + 1
q−1

+ 2 or, since n ∈ Z, when q < n− 2.

Consider two cases:

Case 1. q < n− 2. In this case, Erdos-Gallai conditions for node indexed q can

be written as follows:

q(n− 1) ≤ q(q − 1) + (n− q)min(q,
(n− 1)(q − 1)

q
)︸ ︷︷ ︸

=q

,
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which is always satisfied as:

q(n− 1)− q(q − 1)− (n− q)q ≤ 0,

0 ≤ 0.

We first verify the condition for node indexed n:

q(n− 1) + (n− q)
(n− 1)(q − 1)

q
≤ n(n− 1),

which can be rearranged and simplified as:

(n− 1)(n− q)

q
≥ 0.

Thus, in Case 1, Erdos-Gallai conditions are always satisfied.

Case 1. q ≥ n− 2. Erdos-Gallai conditions for node indexed q are:

q(n− 1) ≤ q(q − 1) + (n− q)min(q,
(n− 1)(q − 1)

q
)︸ ︷︷ ︸

=
(n−1)(q−1)

q

,

q(n− 1) ≤ q(q − 1) + (n− q)
(n− 1)(q − 1)

q
,

which can be rearranged as:

q(n− q) ≤ (n− 1)(q − 1)(n− q)

q
,

or:

q ≤ (n− 1)(q − 1)

q
,

which is never satisfied for any q ∈ {n− 2, n− 1}. ■

Sum of degrees parity The last thing left to verify is the parity of the sum

of all degrees in the intermediate families that satisfy Erdos-Gallai and integrality

constraints. First, observe that a q-maxi-core network is always feasible if the

Defender has an odd number of nodes. For instance, it is always possible to create

a network with q = n−1
2

and vb = n − 3, which satisfies both Erdos-Gallai and

integrality constraints. If the Defender has an even number of vertices, q-maxi-

core networks are not feasible since the value of peripheral nodes is either vb =

(q−1)(n−1)
q

̸∈ Z for any q ∈ [2, n− 2] or the sum of all degrees is not even.

94



Claim D.3. If the Defender has an odd number of vertices, maxi-core networks are

always feasible. If the Defender has an even number of nodes, maxi-core networks

are never feasible.

Proof of Claim D.3.

The Defender has an odd number of nodes. Suppose that Claim D.1 holds

and n is odd. Then peripheral nodes of value vb in the intermediate family sequence

can be either odd or even depending on the parity of q. We consider two cases: (1)

q is even, and (2) q is odd.

Case 1. q is even. In this case, the value of the peripheral node can be stated

as follows:

vb = n− 1︸ ︷︷ ︸
even

− n− 1

q︸ ︷︷ ︸
even/odd

.

Since n−1
q

can be either even or odd, we consider two subcases.

(1.1) n−1
q

is even.

Suppose n−1
q

is even then: vb = n− 1︸ ︷︷ ︸
even

− n− 1

q︸ ︷︷ ︸
even

= even. Then the overall sum of

degrees must be:

q(n− 1)︸ ︷︷ ︸
even

+(n− q)
(n− 1)(q − 1)

q︸ ︷︷ ︸
even

= even.

Therefore, if both q and n−1
q

are even, then the resulting degree sequence is graphic.

(1.2) n−1
q

is odd.

Suppose n−1
q

is odd then: vb = n− 1︸ ︷︷ ︸
even

− n− 1

q︸ ︷︷ ︸
odd

= odd.

The overall degree sum is then:

q(n− 1)︸ ︷︷ ︸
even

+(n− q)
(n− 1)(q − 1)

q︸ ︷︷ ︸
odd

= odd.

Thus, if the sequence with an even number of vertices q of value vq, but n−1
q

is odd,

such a sequence is not graphic.
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Case 2. q is odd. Suppose n−1
q

is odd then:

vb = n− 1︸ ︷︷ ︸
even

− n− 1

q︸ ︷︷ ︸
even

= even.

The sum of degrees is then:

q(n− 1)︸ ︷︷ ︸
even

+(n− q)
(n− 1)(q − 1)

q︸ ︷︷ ︸
even

= even.

Thus, if q is odd and Claim D.1 holds, the resulting sequence is always graphic.

The Defender has an even number of nodes. Suppose that n is even. Then

in order for vb = n− 1− n−1
q

to be an integer, number of nodes of value vq = n− 1

must be odd. It then follows that vb is always even:

vb = n− 1︸ ︷︷ ︸
odd

− n− 1

q︸ ︷︷ ︸
odd

= even.

Then the overall sum of degrees must be:

q︸︷︷︸
odd

· (n− 1)︸ ︷︷ ︸
odd

+(n− q)︸ ︷︷ ︸
odd

· (q − 1)(n− 1)

q︸ ︷︷ ︸
even

= odd.

It immediately follows that a sequence like that is not graphic.

Therefore, maxi-core networks are not feasible if the Defender has an even number

of nodes. ■

Therefore, if the Defender has an even number of vertices, the relaxed maximisation

problem provides only two feasible solutions: a star and complete networks.

E Supplementary material for Subsection 3.4

# Complete/star

3 1.62353

4 1.55

Table 2: Estimations of edge cost threshold between complete and star formations for

networks with 3 and 4 nodes
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# Complete/MC MC/Star q vs

5 1.6 1.64706 2 2

7 1.71429 1.72482 3 4

9 1.77778 1.78462 2 4

11 1.81818 1.82026 5 8

13 1.84615 1.84828 2 6

15 1.86667 1.86741 7 12

17 1.88235 1.88327 2 8

19 1.89474 1.89521 3 12

∞ 2 2 n/a n/a

Table 3: Estimations of edge cost thresholds between complete, maxi-core (MC), and

star formations for networks with odd number of nodes and n ≤ 19, where q stands for

the core size, vs is a value of a peripheral node in an optimal maxi-core network

# Complete/star

6 1.67949

8 1.755

10 1.80244

12 1.8347

14 1.85798

16 1.87555

18 1.88927

20 1.90028

∞ 2

Table 4: Estimations of edge cost threshold between the star and complete formations

for networks with an even number of nodes, n ≤ 20
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