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Abstract. The number of Distributed Denial of Service attacks is grow-
ing, and the attack vectors are also changing. The advent of IoT botnets
like Mirai has challenged the popularity of older techniques like ampli-
fication attacks. In this paper, we characterise the consequences of this
change for the victimisation pattern of DDoS attacks. We conduct the
first empirical comparison of victims of amplification attacks and bot-
net attacks and draw on the properties of targets outlined in Routine
Activity Theory (RAT) to characterise the differences. We analyse the
differences in the victimisation patterns at the level of IP addresses and
Autonomous Systems. We find differences in the types of networks the
victims reside in; botnet attacks are more common against hosting ASes,
and its victims are significantly more likely to use dedicated hosting. We
also observe that victims of botnet-based attacks tend to be in ASes
with larger customer cone sizes. We use a balanced random forest classi-
fier to distinguish the features of the victims of each attack. The model’s
output confirms our findings and draws out additional geographical dif-
ferences in the victim distribution. Using the target properties of Value,
Inertia, Visibility and Accessibility outlined in RAT, we find that vic-
tims of botnet attacks tend to have higher value and visibility and lower
inertia than those of amplification attacks. We explain the differences in
these patterns of victimisation to the underlying differences in the attack
technique. We further use RAT to outline the policy implications of our
analysis.

1 Introduction

Any online service faces the threat of being taken offline due to Distributed
Denial of Service (DDoS) attacks. These attacks overwhelm the target with spu-
rious requests, exhaust its server capacity and render the service unavailable. The
emergence of the DDoS-as-a-service economy made these attacks more accessi-
ble and decreased the barriers to entry [28]. Also termed booters, these services
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enable customers to purchase and launch DDoS attacks against a target of their
choice. The downtime due to these attacks imposes significant economic costs
in terms of availability, recovery and reputation [9]. It has been estimated that
an hour of downtime causes between 61K and 67K USD in loss of revenue [46].
Moreover, in some cases, consumers tended to diversify their providers as a coun-
termeasure against DDoS in the aftermath of DDoS attacks [7]. There has also
been a significant negative impact on the stock prices of companies when DDoS
attacks disrupt the service to consumers [5].

As is often the case [8], the persistence and growth of DDoS attacks can be
better explained by a lack of incentives rather than a lack of technical solutions.
The actors best positioned to implement controls for DDoS attacks – the in-
termediaries – do not have sufficient incentives to do so. For instance, Source
Address Validation (SAV) is a technical solution that prevents source address
spoofing in a network and therefore limits the prevalence of certain types of
DDoS attacks. In an empirical study of 334 ISPs, Lone et al. [36] found that
73% of the ISPs have not fully deployed SAV in their networks. They concluded
that the lack of complete adoption is due to a lack of incentives for the network
operators. While the cost of the implementation is borne by the operator, the
benefits are reaped by the rest of the internet.

This lack of incentives is despite most victims of DDoS attacks residing in
broadband access networks, with relatively fewer targets in hosting and enter-
prise networks [41]. However, this victim distribution is for DDoS attacks that
use amplification techniques: sending small spoofed packets that trigger an am-
plifier – such as a DNS, NTP or SNMP server – to send a much larger response
to a victim. These attacks are typically purchased from booters which offer low-
powered but accessible and cheap attacks to consumers who use them predom-
inantly against other consumers, such as in the context of gaming. While these
low-powered attacks place some additional stress on the broadband networks,
the consequences are not severe enough for network operators to take stronger
preventive actions like SAV.

However, the last few years have seen the emergence of powerful DDoS at-
tacks from IoT botnets. An attacker infects and takes control of a large number
of IoT devices to create a botnet. The collective power of all the devices can then
be used to launch attacks with magnitudes higher than earlier techniques. The
notorious IoT botnet-powered DDoS attack on ‘Dyn’ in 2016 was the largest
attack seen till then and disrupted services like Reddit, Twitter and CNN. More
recently, in August 2022, Imperva reported on a DDoS attack using IoT botnets
that had a total of 25.3 billion requests setting a new record for the largest DDoS
attack mitigated by them [19]. Moreover, IoT botnet-based DDoS attacks are
not only more powerful, but their proliferation is also increasing at an alarming
pace. There are reports that current geopolitical tensions and hacktivism have
triggered an increase in the proliferation of botnets [39].

What remains unknown, however, is the consequence of this change on the
victimisation pattern. Understanding the impact of the change on the victim
distribution is important because it might trigger a subsequent change in in-
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centives. Our current knowledge of victim distribution is shaped by high-profile
attacks that make the news and industry reports based on limited visibility from
their customer networks. On the one hand, we could argue that the change in
the attack vector would not make any difference. The operators of the attack
infrastructures are not the actors ordering the attacks; their clients are. Thus,
one hypothesis would be that the infrastructure is simply a tool, and the actor
ordering the attack does not care which tool is used as long as it gets the job
done.

On the other hand, IoT botnets enhance the magnitude of DDoS attacks
and, at the same time, undermine our current DDoS mitigation techniques,
like scrubbing [40]. So another hypothesis would be that this combination of
increased attacker power and decreased defence capability would enable the at-
tackers to go after better-defended targets, albeit at a higher cost, thus changing
the victimisation patterns. Without a sufficient investigation into the victimisa-
tion patterns of IoT botnet-based DDoS attacks, we cannot confirm if the change
in attack technique has caused a change in the corresponding targets. Thus, it
is essential to study the change in victimisation patterns not only because it is
under-explored in literature but also because the findings can help us understand
the change in and distribution of the incentives. This would be a necessary step
in identifying the changes necessary to law and public policy to better align the
incentives.

In this paper, we address this gap. We find out what the change in attack
vector means for the victims and how this might reshape incentives to invest in
DDoS defence measures. We identify the victims of IoT botnet-based DDoS at-
tacks and compare them to earlier attacks using amplification techniques. We do
not know if the victim distribution identified in 2015 by Noorizan et al. [41], still
holds both for the amplification attacks since then or for the more recent attack
vector based on IoT botnets. Thus, our primary research question is, ‘Who are
the victims of DDoS attacks using IoT botnets, and how does the victimisation
pattern of IoT botnets compare to that of earlier attack techniques?’.

We answer the question using two existing data sources on DDoS attacks that
are, as yet, under-utilised for studying victimisation patterns. First, we collected
attack commands sent by the Command and Control servers (C2s) to Mirai
bots from Netlab4. Next, for the benchmark, we collected amplification attack
data; victim IP addresses from amplifier honeypots dubbed AmpPots [32]. Using
these data sets, we compare DDoS commands sent by IoT botnets to honeypot
data over 15 months (January 2020 to March 2021). We compare network-level
features of the target IP addresses, like the type of Autonomous Systems, and
host-level features, like the density of domains hosted on the address, to identify
victimisation patterns. Using AmpPot data between January 2016 to March
2021, we also study the longitudinal evolution of victims of amplification attacks
over the four years. Further, we map the identified features to the four tenets of
Value, Inertia, Visibility and Accessibility outlined in Routine Activity Theory

4 https://netlab.360.com

https://netlab.360.com
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(RAT) and use the framework to evaluate how incentives might play out in terms
of suitable targets and defences. In short, our contributions are as follows:

– We perform the first empirical study outlining the change in the victimisation
pattern of DDoS attacks due to IoT botnets. We compare and quantify the
differences in victims of IoT botnet-based DDoS attacks and amplification
attacks.

– We identify victimisation patterns of DDoS attacks by characterising the
networks where the victims reside, i.e., network type, ranking, geo-location
and network size. Our results show that botnet attacks are proportionally
more common against Hosting ASes. 36.6% of botnet attacks were against
hosting ASes compared to only 21.1% of amplification attacks. We also find
that the victims of botnet attacks are more likely to use dedicated hosting.

– We also identify the sectors where the targeted victims operate. Victims
of IoT botnets are primarily Small and Medium Enterprises. In contrast,
online gaming remains the most targeted industry for amplification attacks,
accounting for more than a third of the attacks.

– We use a balanced random tree classifier to distinguish the characteristics of
victims suffering an IoT botnet attack vs an amplification attack. We identify
statistically significant differences in the rankings of the networks where the
victims reside – botnet attacks target high-ranked ASes proportionally more.
The classifier also outlined geographical differences in the victim distribution.
We find that a larger percentage of victims IPs of botnet attacks were in
Europe and Africa, while amplification attacks were more prevalent in the
Americas and Asia.

– We characterise the differences in the victimisation pattern using the tar-
get properties outlined in RAT. We connect the differences identified to the
underlying differences between the attack vectors and draw out policy im-
plications.

2 Background and Related Work

DDoS attacks pose a relevant and significant threat in our current digital land-
scape. In 2020, DDoS attacks grew more than 50% increasing both in complex-
ity and attack volume [50]. The explosion in network traffic due to the changes
caused by the COVID-19 pandemic made it easier for attackers to launch DDoS
attacks. Since the servers were already under stress due to high traffic volume,
it took a relatively lesser effort to overwhelm the servers with requests and take
the service offline. According to an industry report [52], in pure numbers, 25% of
all attacks in 2020 were targeted at the technology sector, but the corresponding
attack size was relatively low. The healthcare sector, on the other hand, suffered
the most in terms of average attack size but was amongst the least attacked in-
dustry. 2022 and 2021 saw a slight reduction in the percentage of DDoS attacks
since 2020, 9.7% and 3.5%, respectively, but the peak bandwidths in 2021 were
almost seven times higher than 2020 [21].
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The market for DDoS attacks

An important contributing factor to the high volume of DDoS attacks is the
low entry barriers to launch one. For the tech-savvy and motivated attackers,
there are YouTube tutorials on creating botnets and launching DDoS attacks.
For the non-tech-savvy, amplification attacks can be purchased online from the
aforementioned DDoS booter services with an ease similar to online shopping.
In 2020, these cost a mere $48 for an hour, $134 for a day and $1,000 for a
month [50]. Booters also have more in common with e-commerce websites beyond
ease of purchase. Musotto and Wall [38] showed that booters are similar to e-
commerce websites in terms of how their products, price and customers are
differentiated and also noted that the profit margins are not very high.

On the defence side, the threat of DDoS attacks has created a market for
DDoS Protection Services. There is a prominent trend towards increased adop-
tion of these services, especially by large web hosters [26]. Such protection is
typically classified into proactive and reactive protection [23]. Proactive protec-
tion is always on, looking out for potential attacks and, depending on the exact
configuration, includes varying levels of packet analysis to determine which pack-
ets to block. Reactive protection, on the other hand, only analyses meta-data of
network traffic to detect anomalies and traffic mitigation kicks in only when the
analysis points to suspicious activity.

Technical studies on DDoS attack: Amplification and botnet based

Technical studies on understanding amplification DDoS attacks have outlined
detection mechanisms [27,15,51] while other studies investigate the various pro-
tocols that are commonly abused for amplification attacks. They identify com-
monly used protocols are the UDP-based NTP, LDAP, OpenVPN, ARMS, Ubiq-
uity Discovery Protocol and the like [31] and also observe that there are over
2.5k DDoS attacks in a single day. Kührer et al. [33] reported on the signifi-
cant diversity in amplifiers used in DDoS attacks and also estimated that TCP
handshakes can be abused to cause up to 20x amplification.

Similarly, several studies have contributed to our technical understanding of
IoT botnets and specifically of Mirai. A seven-month retrospective analysis of
the Mirai botnet [11] studied its emergence, the evolution of its variants, and the
competition for vulnerable hosts. Notably, it also pushed forth the understanding
that Mirai marks a significant change in the evolutionary development of botnets,
both due to the simplicity of its infection vector and its exponential growth.
This provided a wake-up call to prioritise the security of IoT devices to prevent
such severe DDoS attacks [30]. To that end, Jerkins [24] catalogued vulnerable
IoT devices using the same attack vector as Mirai motivating manufacturers to
address their poor security practices. Similarly, Rodríguez et al. [45] identified
device types and manufacturers of Mirai-infected IoT devices through Web-UI
image scans and banner analysis. With regard to the cleanup of Mirai-infected
devices, Cetin et al. [13] show that quarantining and notifying infected customers
through the ISP has the maximum impact. 92% of infections were remediated



6 S. Vetrivel et al.

within two weeks, and only 5% were reinfected in five months. Others have also
pointed to the significant role of broadband ISPs in combating the spread of IoT
botnet infections like Mirai [42].

Victims of DDoS attacks

Commercial DDoS protection services claim that any business can be a tar-
get for DDoS attacks while available prior research [18,29] on victims places
gaming-related services and end hosts at the forefront. Moreover, targets are
typically attacked by different types of attacks, and web servers are targeted
most often [25]. Other studies on victims were conducted to better understand
attacker motives. Abhishta et al., [4] used RAT to analyse the victim properties
of 26 DDoS attack events that made the news. They argue that economic rea-
sons are only one of the possible motives and advise companies to monitor the
social, political and cultural dimensions of their environment to have a better
understanding of the underlying threats. Another study on attacks on Dutch
educational institutions [6] lends evidence to this claim. It found a significant
correlation between the academic schedules and the attack patterns leading to
the conclusion that the attacks were launched by an actor who would have ben-
efited from the disruption to the educational activity.

However, while there is information on the high-profile attacks that make
the news, either owing to the target or the severity, there is scarce info on
other attacks. It is important to note that while high-profile targets might have
protection and redundancy in place to mitigate the severity of the attacks, other
businesses might not have sufficient protection in place to prevent even less severe
attacks. Moreover, there is no work on distinguishing the victims or targets of
DDoS attacks via botnets and amplifiers.

3 Data Sources and Methodology

As mentioned in the Introduction, to conduct this victimisation study we use
previously collected data sets on DDoS attacks that have been under utilised
to study victimisation patterns. To study the victimisation of IoT botnets, we
collected Mirai attack data from the Network Security Research Lab NetLab
360’s website5. For the comparison to earlier attack, we used amplification attack
data, collected through AmpPots [32]. To the raw data obtained from these
sources, additional data was added to enable meaningful analysis.

As mentioned in the Introduction, we draw upon Routine Activity Theory
(RAT) to analyse the patterns of victimisation observed in both the types of
attacks. RAT posits that crime happens at the convergence of space and time
where a motivated offender and a suitable target are present in the absence of a
capable guardian [16]. Although originally developed for offline crime, RAT has
been adapted to the context of online crime [53]. RAT outlines four properties

5 https://data.netlab.360.com

https://data.netlab.360.com
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that affect the target suitability – Value, Inertia, Visibility and Accessibility,
often referred to as VIVA. Value is the gains to the attacker from the attack,
Inertia is the target’s resistance to the attack, Visibility is the degree of exposure
of the target to the attacker and Accessibility is the reachability of the target.
We map each of the victim attributes analysed to the one of target properties
outlined in RAT to study the underlying differences that drive target selection.
Figure 1 shows an overview of the data analysis process including the mapping
of the attributes to RAT properties.
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Fig. 1: Overview of attributes analysed and the corresponding mapping to RAT
properties

3.1 NetLab Data

The Mirai botnet attack data used in this analysis is sourced from the Network
Security Research Lab, Netlab 360. They used analyser programs to heuristically
analyse and extract C2 domains or IP information from samples of the Mirai
malware. They then track these C2 servers and publish the command informa-
tion received from the C2s. A detailed explanation of their methods to extract
configuration data, attack methods and dictionaries of usernames and passwords
from Mirai samples and to classify and track its many variants is provided in [35].
As part of their OpenData Project, till mid March 2021, they released portions
of the Mirai attack data thus captured on their website6. We scraped and down-
loaded this attack data set from their website over the collection period between
6 https://data.netlab.360.com/mirai-c2/

https://data.netlab.360.com/mirai-c2/
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Jan 2020 and March 2021. We scraped and downloaded this attack data set from
their website over the collection period between Jan 2020 and March 2021. The
data contains a snapshot of commands sent by C2s to Mirai infected devices
and includes the time of the attack, the target IP and port and the duration of
the attack. The C2 server IP address though available is obfuscated. We found
minor inconsistencies in the data, such as port numbers outside the range of 0
to 65535. However, these are likely artifacts of Netlab’s data collection method-
ology or our scraping. Given the low occurrence of such inconsistencies, we omit
these data points from our analysis. On average, there were 596 unique target
IPs observed each day over the entire period of observation, with a minimum of
11 and a maximum of 1,169 IPs.

3.2 AmpPot Data

The Amplification attack data analysed was collected between Jan 2016 and
March 2021 through amplifier honeypots, termed AmpPots and its working is
explained in detail in the original paper [32]. In short, these honeypots mimic ser-
vices commonly abused by attackers for amplification attacks and send back le-
gitimate responses. These services include QotD (17/UDP), CharGen (19/UDP),
DNS (53/UDP), NTP (123/UTP), SNMP (161/UDP) and SSDP (1900/UDP).
Attackers are thus lured into using these honeypots as amplifiers and data on
ongoing attacks, targets and techniques are collected by the AmpPots. These
amplifiers are deployed in Japan and depending on the ISP their IPs change
every 5 to 30 weeks.

Table 1: Description of AmpPot data over the period of analysis
Time Period Number of AmpPots Types of AmpPots

Jan 2016 to May 2017 9 7 proxied and 2 agonostic
June 2017 to March 2018 7 7 proxied
March 2018 to April 2021 19 11 proxied and 8 agnostic

Over the four years, there were differences in the number and type of sensors
used which are illustrated in Table 1. Proxied sensors imitate the functionality
of the underlying protocol abused by the attackers. They forward the request
to internal servers running the abused protocol and send the responses back
to the client. Agnostic sensors, on the other hand, reply with a random bytes
of response irrespective of the validity of the request. These operate with the
assumption that attackers are more concerned about finding hosts that send
back large responses than the validity of those responses. However, in this study,
we focus on the larger overarching trends in the victims of these amplification
attacks rather than the variations due to the differences in the sensors.

In order to separate attacks from scans, an attack is defined as a series of at
least 100 consecutive packets where consecutive is defined as less than 60 seconds
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apart. This is a change from the 3600s and 600s definition used in the earlier
papers [32,41] but it allows for analysis at a more granular level. On average, the
AmpPots observed 9,475 unique target IPs per day over the entire observation
period.

The number of attacks per month for each of the data sets is shown in
Figure 2. The size of the AmpPot data set is higher by two orders of magnitude.
However, we are comparing the relative proportions of attacks across various
aspects and therefore the difference in absolute sizes does not impact the veracity
of the results.
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Fig. 2: Attack distribution over the months

4 Methodology

Before describing the methodology used for comparison, we would like to clarify
the various terms used in the study. We use the word ‘target’ or ‘target IP’
to denote the entity the attacker intended to affect. However, since we can not
directly observe the attacker’s intention, inline with earlier work [41], we use
the term ‘victim’ or ‘victim IP’ to refer to the targeted IP address. From both
attack data sets we extracted three main attributes for analysis: the duration of
the attacks and destination port, both of which were compared directly and the
victim IP address, for which additional data was collected for analysis.

Comparison of AS types.

We first compare the types of Autonomous Systems (ASes) that the victims
belong to. Since DDoS attacks also impose significant stress on the networks or
ASes that the victims reside in, we refer to these ASes as victim ASes. To get
the AS that the target belongs to, we looked up the Autonomous System Num-
ber (ASN) of the targeted IP using historical BGP routing data obtained from
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Routeviews7. These files were loaded into the pyASN package8 freely available for
python to perform IP to ASN conversion.

Once we obtained the victim ASN, we used a previously built research
database for checking the victim AS type. This database was built manually
over the years and is organized around ground truth data from an accurate
commercial database - Telegeography GlobalComms Database Service [3]. The
mapping accurately distinguishes and labels ASes as broadband ISPs, hosting,
governmental, mobile ISP, educational and other types of networks.

In addition, we further improve the classification by identifying hosting ASes
using the same heuristic as Noroozian et al. [41]. We classify as hosting any AS
that was not classified using the database and contains more than 2,700 second
level domains (SLDs). To get the count of SLDs per AS, we use a large passive
DNS (pDNS) database provided by Farsight Security [2]. The database contains
the mapping of IPs and the corresponding domains that they resolved to over
our period of observation. We aggregated the IP level domain count based on the
corresponding ASN they belong to and obtained the count of SLDs per ASN.

We corroborated our classification of AS types with those from ASDB [54]
which classifies AS types using machine learning techniques on data from RIR’s
WHOIS and Business Intelligence Databases. We found that both our classifi-
cation and ASDB have similar coverage rate for our data set. For the Netlab
data set, ASDB has 19.6% unknowns while our classification has 12.5%. A sim-
ilar pattern is observed for AmpPot as well. Since the missing ASes are mostly
on the tail-end of the frequency distribution – ASes which are not commonly
attacked – they do not have a significant impact on our results.

The main difference between the two databases is in the percentage of ISP
broadband and hosting ASes. The percentage of ASes classified as ISP broadband
is higher in ASDB compared to our database while the percentage of hosting
ASes is lower in ASDB. The difference is due to classification of ISP broadband
ASes – ASDB classifies as ISP broadband the ASes our classification marks as
Hosting. However, since the ISP broadband ASes in our database have been
identified using accurate information from Telegeography and have also been
manually validated, we consider our database to be more accurate for our data
set. Moreover, we have classified the ASes based on the predominant use of the
network, either ISP broadband or hosting, while in some cases other types of
users might also be present.

Comparison of AS Ranking.

To compare the size and connectivity of the victim ASes in the botnet and
amplification attack data sets, we used CAIDA’s AS Rankings [1]. These rankings
are calculated using customer cone sizes derived from BGP routing data and
CAIDA’s topological data9. An AS’s rank is inversely proportional to the size

7 http://archive.routeviews.org/
8 https://github.com/hadiasghari/pyasn
9 https://www.caida.org/projects/ark/

http://archive.routeviews.org/
https://github.com/hadiasghari/pyasn
https://www.caida.org/projects/ark/
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of its customer cone – the sum of its direct and indirect customers. The indirect
customers are the customers that can be reached through the ASes that a given
AS peers with. These ranks denote both the influence of an AS in the global
routing system and its size10.

Comparison of Victim Location.

We use MaxMind’s GeoIP location database 11 to identify the geographical lo-
cation of the victim IPs in both data sets. The service provides the country an
IP address is located in with an accuracy of 99.8%.

Comparison of domains hosted on target IPs.

To compare the domain level attributes, we use the same pDNS database de-
scribed earlier. We retrieved the domains hosted in the top 100 most common
IPs for both sets of data across the entire time period of observation. Since we
were interested in domains that are hosted, we restricted ourselves to IPs within
hosting ASes. We collected the super set of all the domains hosted on these IPs
for each month that they were observed in the data sets.

In addition, to get an estimate of the value of the domains hosted in these IPs,
we got the Tranco ranking for these domains. Tranco 12 provides a transparent
and reproducible popularity ranking of websites. We then manually analysed
these domains to identify their types. Since most of the domains did not have
an associated Tranco ranking, we analysed the domains with Tranco ranking
separately from others without a corresponding ranking.

Modelling.

In order to better study the differences in the victimisation patterns of the
two attack techniques, we constructed a Balanced Random Forest classifier [14].
Random forest is a supervised machine learning algorithm that uses multiple
decision trees to arrive at a final class output. Owing to the differences in the size
of our data sets, we used a Balanced Random Forest Classifier that is available
as part of the imbalanced-learn library [34]. This uses random under sampling
of bootstrapped samples to balance the size.

We only selected properties of victims as features because we were interested
in the differences in the victimisation patterns across the two data sets. This
implies that the duration and port, although they relate to the victim, were not
included in the model since they are properties of the attack itself rather than
the victims. There were four features input to the classifier. Of these, two were
ordinal – the domain count of the victim IP and the the CAIDA ranking of the
victim ASN. The other two features were categorical and were one-hot encoded
10 https://asrank.caida.org/about
11 https://www.maxmind.com/en/geoip2-country-database
12 https://tranco-list.eu/

https://asrank.caida.org/about
https://www.maxmind.com/en/geoip2-country-database
https://tranco-list.eu/
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before being input to the model. These were the region, based on the geo-location
of the victim IP, and the AS type of the victim ASN. The countries output by
the geo-location were grouped into regions for a more concise representation.
The duplicate data points were dropped before being input to the model. We
ran the model for varying values of number of estimators (the number of trees
the model constructs) and maximum depth of the tree and picked the values
that had the best accuracy.

RAT properties

As mentioned earlier, we map each of the attribute analysed to one of the four
properties of RAT – Value, Inertia, Visibility and Accessibility. We do not use
the property of accessibility since all the targets are hosted on the internet and
can be reached by any attacker with an internet connection. We mapped the
AS level attributes, AS type and ranking, to Value and Inertia respectively. The
value gains to an attacker from targeting a specific type of AS, say hosting, will be
higher than targeting a broadband customer. The former involves monetary loss
from sites hosted on the target IP while the latter will result in lost connection
for an individual customer. High ranked ASes will offer higher resistance to the
attack and therefore have higher inertia when compared to other low ranked
ASes. The location of the target also relates to value. Targets in countries with
higher ICT index are more valuable because of the higher dependency of the
country on these services. The domain level attributes number of domains and
type of domains both relate to visibility. The higher the number of domains that
are hosted on a target IP, the higher it’s reachability or visibility. Similarly, some
types of domains like X are more visible than other types of domains, say Y.

Ethical Considerations.

We adhered to our institution’s ethical policy at all times and appropriately
handled issues concerning data preservation and data sharing. For the botnet
attack data set from Netlab, we notified them about our interest in their data
set, and the scraping scripts were designed to minimise the load on their servers.
The amplification data set was collected via honeypots. In order for a honey pot
to successfully lure attackers, it needs to participate in the attack to a certain
degree. However, each honey pot deployment has rate limiting mechanisms to
minimise the impact of the participation to a negligible degree.

5 Results

5.1 Distribution of targeted AS types

We first examine differences between amplification and botnet attack victims
by comparing differences among the autonomous systems in which victim IPs
reside, i.e. by comparing victim ASes. We compared the distribution of victim
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AS types identified (as described in section 4) over three dimensions Figure 3 –
the percentage of unique IPs, the percentage of attacks and the percentage of
unique ASes in each data set. The comparison of the distribution of unique IPs
across the AS types shows that the highest percentage of victims in both AmpPot
(63.8%) and Netlab (47.1%) data sets are in broadband ISPs. Moreover although
the second highest category for both is hosting AS, only 14% of AmpPot victims
belong to hosting while about 32.4% of Netlab victims are in hosting ASes.
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Fig. 3: Comparison of percentage of unique ASes, attacks and IPs across the
AS Types

A similar trend is observed in the distribution of unique attacks across the
ASes. The most common AS Type for both data sets is ISP broadband (AmpPot
- 48.1% and Netlab - 41.7%). The next highest in AmpPot is Others (30.8%)
while for Netlab it is hosting (36.6%). However, when it comes to unique ASes the
distribution becomes more interesting. The majority for both (AmpPot 87.6%
and Netlab 74.3%) is Others but the second most common is hosting for both
(AmpPot 9.4% and Netlab 17.6%) and not broadband ISPs (AmpPot 3.4% and
Netlab 8.7%). This shows a remarkable concentration of victims in broadband
ASes: 64% of victim IPs in the AmpPot data set are from 3.4% of ASes and 47%
of victim IPs in Netlab data set are from 8.7% of ASes. Moreover, even when
using ASDB for AS Type classification, the proportional distribution of attacks
over the AS types is similar.

Further, we see that the distribution of victim ASes across the AS Types
has remained relatively stable when compared to earlier work [41]. The ISP
broadband AS type still has the highest number of attacks (48%) and hosts the
most unique IPs (64%). However, the percentage of attacks in the Others cate-
gory which includes education, government, gaming, ISP-Mobile and unknowns
among others, has increased.

5.2 Rankings of the targeted ASes

Next we compare the differences in the CAIDA AS rankings of the victim ASes.
As seen in Figure 4, we observe a difference in the mean ranking of ASes in
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Fig. 4: Comparison of AS ranks between AmpPot and Netlab data sets
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Fig. 5: Comparison of AS ranks between ASes common to both data sets and
those unique to each data set

the AmpPot and Netlab data sets. The mean rank of ASes in the AmpPot data
set is 23,749.9 while for the Netlab data set it is 16,471.5. In order to check
if this difference is significant, we performed the Mann-Whitney U test. The
results indicate that there is a statistically significant difference (p<0.001). This
indicates that the relative size, connectivity, and therefore influence of ASes in
the Netlab dataset are higher than those in the AmpPot dataset.

However, it should be noted that this high ranking (and higher influence) is
also seen in the ASes that are common to both AmpPot and Netlab as shown
in Figure 5. The Mann-Whitney U test also showed a statistically significant
difference in the ranking of these two sets of ASes (p<0.001). We thus see that
the larger, more influential ASes contain victims targeted by both amplification
and botnet attacks, but the proportion of botnet attack victims in these ASes
are significantly more. 94.7% of unique ASes in the Netlab data set are in this
common group compared to 23.6% of unique ASes in the AmpPot data set.



A Comparative Analysis of DDoS Victimisation 15

5.3 Geographical distribution of the targeted IP addresses

We then compared the geographical distribution of victim IP addresses across
our datasets. As mentioned earlier, we used MaxMind’s GeoIP13 location to get
the geo-location of the victim IPs.
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Fig. 6: Countries with more than one percent of victim IPs

Figure 6 shows the top ten countries with the highest percentage of victims.
We found that United States has the highest victim IPs in both data sets (Netlab
- 44.6% and AmpPot - 37.3%) by a large margin. The next highest country
with most victims of botnet attacks is Canada (5.75%) and for amplification it
is Brazil (11.6%). Interestingly, in both data sets, China has the third highest
number of victim IPs (7.5% in AmpPot and 5.7% in Netlab) and United Kingdom
has the fourth highest (3.9% in AmpPot and 5.3% in Netlab). Though Saudi
Arabia was the fifth highest country with victim IPs of AmpPot (3.3%), only
0.2% of victim IPs in Netlab were located in Saudi Arabia. The distribution of
percentage of attacks across countries with more than one percent of attacks in
each data set is shown in Figure 6. Although the graph seems to show an over
representation of botnet victims in countries with high GDPs, we did not find
any statistically significant correlation. The cross comparison of victim location
across our amplification attack data and botnet attack data also suggest minor
differences.

13 https://www.maxmind.com/en/geoip2-country-database

https://www.maxmind.com/en/geoip2-country-database
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Fig. 7: Percentage of victim IPs across different regions

We then grouped the countries by regions using the Standard area codes
provided by the Statistics Division of the UN 14 to study the differences at a more
aggregate level. When grouped by regions, the Americas (North America and
South America together) rank the highest in both data sets (AmpPot 53.9% and
Netlab 52.6%). However, the next highest region with victims of amplification
attacks is Asia (21.4%) which has half as many botnet victims (10.2%). The
second highest percentage of botnet victims are in Europe (26.7%) which also
has 19.4% of amplification victims. We see that the percentage of botnet victims
in Africa is twice that of amplification victims. The distribution of the percentage
of attacks across all regions is illustrated in Figure 7.

5.4 Comparison of domains hosted in the targeted IPs

Next, we compare victims by examining domain resources hosted behind the
attacked victim IPs in our data sets. As described in the Methodology (section 4),
we used a passive DNS database to obtain the number of domains hosted on the
target IPs in both data sets. We calculated the domain count per IP as the
average of the number of domains hosted on the IP through all the months that
the IP was seen in the data set. We then compared the domain counts of unique
attacks on hosting ASes in each data set. We saw that 77% of attacks against
hosting ASes in AmpPot and 40% of attacks in Netlab had a domain count of
zero. The cumulative distribution function of the remaining attacks with domain
counts greater than zero is shown in Figure 8.

We observe that both the mean and median domain counts of attacks in
the AmpPot data set are higher than that of Netlab. The mean and median
domain counts for attacks in the AmpPot data set are 26.7 and 10 respectively,
while for Netlab they are 2.5 and 2. The significant difference in domain counts
illustrated in the box plot in Figure 9 and is also confirmed by the results of the
14 https://unstats.un.org/unsd/methodology/m49/overview

https://unstats.un.org/unsd/methodology/m49/overview
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Fig. 8: CDF of domain count of unique attacks in hosting ASes in both data
sets

Mann-Whitey U-test (p<0.001). The difference without dropping domain counts
of zero is also significant (p<0.001).

5.5 Analysis of domains resolving to top 100 most common IPs.

In order to compare the types of domains hosted on the victim IPs in each data
set, we manually analysed them. We extracted the domains hosted on the top 100
most common IPs in each data sets and dropped outlier IPs with significantly
larger domain counts (less than 1% of the IPs). This gave us 274 unique domains
on Netlab and 418 on AmpPot.

Comparision of Tranco rankings As mentioned earlier, to get a better esti-
mate of the value of these domains, we got their corresponding Tranco ranking15.
We observed that 87.6% (240) of domains in Netlab and 96% (401) of domains
in AmpPot had no associated Tranco ranking. The domains and corresponding
ranking in each data set, where available, are presented in Table 2 and Table 3.
The average Tranco ranking for the domains unique to AmpPot is 254,141.3
while for Netlab it is 199,796.6. If we use the Tranco ranking of popularity as a
proxy for value, we see that the targets of AmpPot have lower value than those
of Netlab.

Analysis of domains with Tranco rankings We analysed the subset of
domains with an associated Tranco ranking, separately from the rest of the do-
mains. There were six domains in common between the two data sets. These
were two hosting/Cloud providers, three Network Service Company Websites
15 https://tranco-list.eu/

https://tranco-list.eu/
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(Norton, RIPE, Geolocation API) and two unreachable domains (KKK.com
and KKK.bz). Of the rest, AmpPot has four hosting/Cloud provider sites, two
African news sites, one UK LGBTQ website and one unknown (17tahun.com).
In Netlab however, the remaining domains have a wider classification: nine host-
ing/cloud provider sites, four gaming related sites, three domains of messaging
platforms (discord, telegram and IRC), two pages linking to drugs, two univer-
sity websites, one each of a Psychic reading website, a News/Information site,
an LGBTQ site and a porn site and finally two unknowns.

Table 3: Domains and corresponding Tranco rankings where available -
AmpPot

Domain name Tranco ranking

secureserver.net 1,107
aliyuncs.com 1,930
allafrica.com 4,292
ripe.net 6,674
incapdns.net 8,006
transip.net 226,059
lgbt.foundation 296,282
pro-norton.com 437,159
17tahun.com 741,612
africanews.org 818,292

Analysis of domains without Tranco rankings Most of the domains in the
subset of domains without an associated Tranco ranking did not resolve to an



A Comparative Analysis of DDoS Victimisation 19

Table 2: Domains and corresponding Tranco rankings where available - Netlab
Domain name Tranco ranking

avast.com 725
discord.gg 1,242
ovh.com 2,561
ripe.net 6,674
your-server.de 15,249
hetzner.com 25,366
hetzner.de 28,316
acquia-sites.com 38,906
2ksports.com 44,098
psychic-readings-for-free.com 46,716
zbigz.com 91,006
nexus-cdn.com 141,504
unsam.edu.ar 167,213
dathost.net 179,373
dal.net 194,209
softether.net 202,438
verygames.net 223,435
honglingjin.co.uk 251,661
aloneproxy.top 259,587
sexdrug.tech 343,343
fuckarea.biz 345,721
bytebx.com 360,102
sexwax.me 367,564
omgserv.com 392,383
lesbian.com 404,008
iproxies.club 405,449
prick.top 407,477
clouvider.net 647,979

IP address. We therefore ran a check with a domain registration database 16

to get details about the registration status. We found that only 77% and 61 %
of domains were still registered as active domains respectively in the AmpPot
and Netlab datasets. We took a 100 random samples from each of the domains
registered as active for manual analysis. However, despite being registered as
active 54% of domains on Netlab and 63% of domains from AmpPot were
not accessible. The errors varied from ‘Connection refused’ (401) to ‘Name not
resolved’. Of the remaining which were accessible, the distribution is given in
Table 4.

We see that the most common type of amplification attacks are on gaming
related website in line with earlier research [41]. However, although there exist
gaming related victims within Netlab, they are not the most popular. The most
common victims of botnet attacks are Small and Medium Enterprises (SMEs).

16 https://who.is/

https://who.is/
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Moreover, AmpPot has no domains relating to hosting or Cloud or non-gaming
related Servers while Netlab has a fair share of those across both the data sets.

Table 4: Categories of domains in AmpPot and Netlab
Category AmpPot Netlab

Gaming related 26 9
SME 8 18

News/Information 2 -
Network related 1 5

Hosting/Cloud/Server - 11
Porn/Suspicious - 3

5.6 Duration of the DDoS attacks

Next, we examine amplification and botnet attack victims differences by analysing
and comparing the duration of attacks directed at each victim across data sets.
The average duration of an attack in the AmpPot data set is 754.94 seconds,
with a median of 164 seconds. However, while the median duration in Netlab is
80 seconds, the average duration is much higher 793,220.66 seconds (about nine
days). The high average is undoubtedly driven by a few outliers in the data.
These outliers include values like 4,294,967,295 seconds – the maximum value
possible in 32 bits (0xFFFFFFFF) – which amounts to about 136 years. We
looked at the Mirai source code17 and found that the attack function returns
an error when the duration value is greater than 3600 seconds. We therefore
dropped attacks with duration higher than 3600 seconds for the comparison
(about 1.1% of total attacks). Since the duration values in the AmpPot data
set are obtained through observation of actual attacks via a honeypot, we did
not drop any outliers. The longest attack in the AmpPot data set is 2,466,626
seconds (about 28.5 days).

17 https://github.com/jgamblin/Mirai-Source-Code/blob/master/mirai/cnc/
attack.go

https://github.com/jgamblin/Mirai-Source-Code/blob/master/mirai/cnc/attack.go
https://github.com/jgamblin/Mirai-Source-Code/blob/master/mirai/cnc/attack.go
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Fig. 10: CDF of duration of attacks

Figure 10 shows the cumulative distribution function for the duration of both
data sets. After dropping the outlier durations in Netlab, the average duration
is 195.5 seconds and the median is 80 seconds. The results of the Mann-Whitney
U-test shows that the differences in the duration are significant (p<0.001).

5.7 Modelling

As outlined in the Methodology (Subsection 4), we ran a Balanced Random
Classifier model to check for differences in the features of the victim in the two
sets. We got the highest accuracy (0.66) with a maximum depth of 8 and 500
trees; the feature weights output by the model are shown in Figure 11.

The results show that highest contributor to the difference between the vic-
tims is the domain count of the IPs followed by the ranking of ASes. This is also
in line with our analysis which shows significant differences in both the domain
counts and the AS ranking. The differences across regions, though lesser by an
order of magnitude, is mostly similar to our region analysis. However, where
our analysis only showed minute differences in the percentage of victims in the
region of Americas, we see that it is the second highest driving factor for differ-
ences in region. Upon closer inspection into this divergence using a visual tree
interpreter tool, we found that the model uses a higher value for the Americas
region as a higher weightage for the AmpPot class. Interestingly, there are only
negligible differences amongst the contribution of the different AS types to the
classification.
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Fig. 11: Random Forest feature importance scores

6 Discussion

Our primary aim with this research was to identify the victimisation pattern
for IoT botnets and compare it to the pattern for amplification attacks. We
postulated that if there is an underlying difference in the actors deploying these
attacks and the corresponding targets, we would see this difference reflected in
the victimisation pattern. Conversely, if the attack vector is irrelevant to the
actors ordering the attacks, we would not see any difference in the victimisation
pattern.

Our results show clear differences in the victimisation pattern within all six
attributes analysed. The AS type analysis indicates that a larger percentage of
botnet victims reside in hosting ASes. The CAIDA AS ranking shows that rela-
tively more botnet victims are in high-ranking ASes that serve a larger consumer
base. The geographical differences show a higher percentage of botnet attacks in
countries with higher GDP per capita, albeit with a few exceptions. At the IP
level, we observe that victim IPs of botnet attacks within hosting ASes have a
higher domain density and also host more popular domains, as indicated by the
available Tranco rankings. The classifier highlights the significance of domain
count and AS ranking in driving the differences in the victimisation pattern and
also draws out other geographical differences. Next, we place these results in
the context of the RAT dimensions for an accessible target – Value, Inertia and
Visibility. We have not considered accessibility since all the targets are accessed
via the internet.

Value Value refers to the gains for the attacker from attacking the target,
monetary or otherwise, like status or prestige. Of the six attributes that we
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analysed, three relate to value – AS type, geolocation and the number of domains.
For all three, we find that the higher value of a target correlates with a higher
prevalence of botnet attacks on the target. We postulate that higher the value
of the target, higher the value to the attacker from attacking the target.

As mentioned earlier, hosting ASes have a higher value from an attacker’s
perspective than broadband ASes. Hosting ASes charge higher for their service
compared to broadband ASes. Therefore, a deterioration in the quality of service
due to a DDoS attack on one client will have a higher impact on the revenue for
hosting ASes than broadband ASes. Our results show that though broadband
ASes are the most common target for both types of attacks, botnet attacks are
relatively more common against hosting ASes.

Similarly, countries with higher GDP per capita and ICT development index
have a higher dependency on IT services and therefore derive a higher value from
them. Although not statistically significant, at a country level, we find a higher
occurrence of botnet attacks against victims in the US, UK, Canada, Germany,
France and the Netherlands.

Finally, the number of domains hosted on an IP is a clear indicator of value
due to the difference in pricing structure between shared hosting and dedicated
hosting. Shared hosting, with a larger number of domains per IP, is cost-effective
and easy to use, while dedicated hosting with fewer domains per IP offers a
more stable and predictable performance. This enhanced performance comes
at a higher cost and also requires expertise to set up and maintain. Therefore,
dedicated hosting is apt for high-value domains with higher traffic and bandwidth
requirements, while shared hosting is an attractive option for personal websites
and domains with less traffic. While there is no hard threshold for what counts as
shared hosting, prior studies have put it at around ten domains per IP [47,48].
We find that the average number of domains on victim IPs is 10 for botnet
attacks and 26 for amplification attacks. Thus, by this metric, AmpPot victim
domains are more likely to use shared hosting services, while botnet victims are
more likely to have dedicated hosting.

Inertia Inertia refers to the resistance offered by the target to the attacker.
This could relate to the size of the targets, attacks on smaller targets are easier
to execute than those on larger targets, or the defence capability of the target.
In this research, we mapped the CAIDA ranking of the ASes to inertia. We
find that lower inertia or higher resistance correlates with a higher percentage
of botnet attacks.

Botnet attacks are more prevalent against high-ranking ASes. These high-
ranked ASes have larger customer cone sizes and higher revenue compared to
lower-ranked ASes. DDoS attacks on these ASes will impose a higher societal
cost since a larger number of prefixes are reachable through these ASes. These
ASes thus have both the means – due to their higher revenue – and the motive
– to decrease the impact of attacks – to invest in DDoS protection.
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Visibility Visibility refers to the degree of exposure of the target to the attacker.
Our manual analysis and classification of domains resulted in six types: Gaming
related, SME websites, News/Information, Network related, Hosting/Cloud/Server
and Porn/Suspicious. Of these, we group gaming-related, network related and
hosting/cloud/server as low visibility domains because the exact domains are
known only to those who have intimate knowledge of these services. For instance,
the domain to access the configuration of a hosting or cloud service includes the
public domain of the service, say ‘aliyuncs.com’, but has additional sub-domains
like ‘susharefile.oss-cn-shenzhen.aliyuncs.com’.

We find that these low visibility domains are more common in amplification
attack victims, while high visibility domains like SMEs are more common in
botnet attacks with one exception. Two domains related to News/Information
are among the amplification attack victims, while there are no domains related
to news/information within the botnet attack victims.

The framework of RAT thus helps us understand that there are differences
in targets or victims driven by the differences in attack type. Botnet attacks
are more common against high-value victims with a lower inertia and higher
visibility, while amplification attacks are more common against low-value targets
with high inertia and low visibility.

Square pegs and square holes We see that due to the differences in the
attack type, each attack type lends itself more suited to a particular target.
For instance, botnet attacks are better suited for high-ranked ASes precisely
because they might have DDoS prevention and mitigation measures. Evading
the defences and launching a successful attack is easier with botnets due to the
differences in attack traffic.

Traffic from botnets has legitimate operating system-generated protocol head-
ers, which match the statistical distribution typically observed at the application
layer. Due to this similarity with legitimate traffic, machine learning-based mit-
igation techniques do not achieve high accuracy rates when identifying botnet
attack traffic [40,20]. In addition, the diversity of botnets, each with unique char-
acteristics [44], makes detection more difficult. On the other hand, an attacker
exploiting amplification vulnerabilities in a protocol uses specific values in cer-
tain header fields to trigger an amplified response. These characteristic header
field values make it relatively easy to distinguish an attack from legitimate traf-
fic [12].

Moreover, DDoS protection techniques, like DDoS fingerprinting [22] that
propose sharing rules derived from fingerprints of attack sources, can be effec-
tive against amplification attacks due to the limited number of amplification
sources. However, they will not help defend against botnet attacks since the
attack sources are diverse and distributed across the entire IPv4 space. Thus,
the added difficulty of evading botnet-based DDoS attacks makes them a more
attractive option against high-value clients.

The costs of each of the techniques might also explain the higher prominence
of botnet attacks against high-value targets. Amplification attack infrastructures
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are easier to maintain than botnets. The public services that can be abused for
amplification are widely available; the attackers only need to cover the cost of
scanning for open amplifiers and launching attacks on demand.

On the other hand, IoT botnets need constant renewal since infections of most
IoT malware families are non-persistent; a power cycle removes the infection.
Even if the bot remains infected, the connection with the C2 servers is often lost
within a few days, as C2 addresses are hard-coded in the binaries. So, as soon as
the C2 is taken down, the bots are stranded [49]. This makes the upkeep of an IoT
botnet onerous and time-consuming, potentially driving up its operators’ costs.
In contrast, amplification services are widely available and often masquerade as
benign stressor websites, and they are not subject to similar take-down efforts.

While we could not find any reliable data specifying the costs for each of
the attack techniques, the above-mentioned factors support the conjecture that
botnet attacks are priced higher. The superior attack power, higher operational
costs and the resultant lower availability might play a role in price differentiation
between amplification attacks and botnet attacks. The higher price of botnet
attacks would also deter the less motivated attackers, e.g., teenagers wanting to
win a game of Minecraft, since cheaper options are available. This, in turn, can
also explain the higher prominence of high-value domains in the botnet attack
data set. Thus, like square pegs matching square holes, certain types of attacks
match best with a certain type of target.

Implications for law and policy. The 2016 study on victims of amplification
attacks [41] found that the low price of the attacks attracted behaviour that,
like vandalism and file sharing, is strictly speaking illegal but not a profit-driven
crime. On the other hand, in our results, we see that botnet-based attacks are
more costly to execute and go after more valuable targets than, say, individual
gamers and thus causing more economic losses. These are more likely part of a
profit-driven cybercrime operation or political action. From a crime prevention
and mitigation perspective, the policies for these two types of problems are very
different.

For low-level crimes like vandalism and file sharing among consumers, the
government usually pursues strategies like awareness campaigns and adminis-
trative law mechanisms, like statutory fines. In the past, these strategies have
been used to tackle the consumer demand for DDoS attacks. An awareness cam-
paign launched by the UK’s anti-cybercrime agency warned youth who searched
for DDoS booter services online about the illegality of DDoS attacks [43]. This
proved to be effective at keeping new users out of the DDoS markets [17].

For profit-driven crime, on the other hand, they usually approach it via crim-
inal law and law enforcement actions. As botnet techniques further evolve and
become more widespread, we can expect to see a higher proportion of these at-
tacks in the DDoS landscape. Thus, more of the mitigation will fall to criminal
investigations and disruption efforts rather than consumer-focused interventions.

The framework of RAT further highlights the two main possibilities for the
prevention of DDoS attacks. We can decrease the number of suitable targets by
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limiting the attack power of the IoT botnets. This implies having stronger secu-
rity measures in our IoT devices and thereby decreasing the size of the botnets.
Further, we can also increase the capability of the guardians by improving our
ability to defend against IoT botnets.

This can be best done via information sharing, which has shown to be ef-
fective in mitigating cybercrime [37]. An anti-DDoS coalition, NoMoreDDoS,
established in the Netherlands, enables information sharing and collaboration
amongst partners to collectively tackle the threat of DDoS attacks [10]. The
partners include government organisations, internet service providers and inter-
net exchanges, among others. This illustrates that network intermediaries like
high-ranked ASes, the most common targets of botnet attacks, are uniquely po-
sitioned to benefit from and initiate such information sharing. They have the
incentive to share information – to minimise the stress on their networks. Fur-
ther, the size of these ASes would also protect them against a potential negative
backlash of being cut off from their peers.

7 Conclusion

Denial of Service attacks are almost as old as the Internet, yet our analyses prove
that they show no signs of disappearing. In fact, they are growing in number
and diversifying in terms of attack vectors. With the increase of tools to identify
services that can be misused to perform amplification attacks, DDoS attacks
have been commodified and are accessible to criminals with all kinds of different
skills. On top of these amplification services, the appearance of IoT botnets made
possible to control millions of devices which in turn are also being used to also
launch DDoS attacks. All this together has attracted a great variety of criminals
launching DDoS attacks against a wide range of victims.

While this research does not demonstrate a displacement of traditional booter
services, the commoditization of IoT botnets may alter the market’s technologi-
cal supply. We did not observe repeated victimisation to increase over the years,
meaning that the increase in frequency of DDoS attacks is tied to a growth
on the number of victims. However, we see that the newer targets operate in
large variety of sectors, with small medium enterprises getting more attacks and
gaming services still being a common target.

In the arms race between attackers and defenders, the defence measures must
routinely adapt to attack techniques to minimise the impact of an attack. As
we observe with our results, the newer techniques, which are tougher to defend
against, attract enterprising attackers motivated to cause damage to high-value
clients. So, amplification and botnet attacks are not of the same feather and
their victims are not flocked together. We see that like square pegs finding square
holes, victims who are better able to defend against DDoS attacks are attacked
using more robust techniques. This stresses the urgency to adopt stronger legal
actions against miscreants launching DDoS attacks.
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